Elasticsearch 调优 (官方文档How To)
How To
Elasticsearch默认是提供了一个非常简单的即开即用体验。用户无需修改什么配置就可以直接使用全文检索、结果高亮、聚合、索引功能。
但是想在项目中使用高性能的Elasticsearch,有几方面优化方法最好掌握。
本文就是为了引导如何优化。
常规建议
不要一次返回太大量的搜索结果集
Elasticsearch设计作为一个搜索引擎,非常擅长返回匹配的查询结果。但是,它并不合适像数据库一样,把整个document作为查询结果返回。如果非要这样做,最好还是使用Scroll这个接口来。
避免索引稀疏
Elasticsearch是基于Lucene进行索引和存储数据的,最佳的工作方式是密集的数据,即是所有的document拥有相同的字段。特别是启用了norms(通常是text字段是默认开启)或者启用了doc_values(通常是numerics, date, ip 或 keyword 是默认开启)的字段。
原因是Lucene内部是通过由0到索引 document 总数的 doc_id 来识别 document 。doc_id 用于Lucene api内部之间的通讯:例如使用关键词 match 查询得到的doc_id,然后这些doc_id用于检索 norms 的值去计算 score(匹配得分)。这个 norms 查找方式实现目前是通过为每个 document 保留一个字节。doc_id 可以直接读取该 document 的 norms 值。这种方式好处是可以帮助Lucene快速访问每个 document ,缺点是每个 document 还需要额外占多一个字节的存储。
实际上,这就意味着如果一个index里面有M个document,每个字段的norms就需要M个字节的存储,就算某些字段只是包含在小部份 document 。虽然复杂的类型字段存储使用doc_values,但是一样还会占用存储的。众所周知,fielddata 类型在 pre-2.0之后被替换成 doc_values ,除非 fielddata已经写在硬盘上了,在内存里面的话,也是有这个问题。
需要注意的是,稀疏存储会对索引和搜索速度有明显的影响,额外的存储字节虽然不是字段,也是需要花费时间去索引和搜索的。
当然,index是允许存在少数稀疏情况的,但是如果稀疏数量教大,则会影响整个index的效率。
本章节主要集中在 norms 和 doc_values 这两个影响较大的特性。稀疏情况会影响倒排索引(用于索引 text/keyword 字段)和坐标点类型字段(用于索引 geo_point 和 numeric),影响的程度不一样。
下面有几点推荐能避免稀疏:
避免把无关联的数据放在同一个index
不要把完全不同的数据结构 document 放在同一个 index 里面。最好是将这些 document 放到不同的index里面,可以考虑创建一些较小的index, 用较少的shard去存储。
注意,这个建议不适用于有使用 parent/child 这种带关系的 document 放在同一个 index 的情况。
标准化 document 结构
如果必需把不同类型的 document 放在同一个 index里面,也是有机会减少稀疏情况的。例如,在 index 内所有的 document 都添加一个时间戳字段,通常叫"timestamp"或者"creation_date",它将会有助于把所有的 document 重命成相同的字段。
避免不同的 type 放在同一个index
多个 type 放在单个 index 看起来是个简单的方法。但是Elasticsearch并不是基于 type来存储的,不同的 type 在单个 index 也会影响效率。如果 type 没有非常相似的 mapping,建议考虑放到一个单独的 index 上面。
对于不同的字段禁用 norms 和 doc_values
如果以上建议适用,还需要检查字段是否启用了 norms 和 doc_values。通常只用于过滤而不需要进行打分(匹配度打分)的字段,可以直接禁用 norms 。不用于排序或者聚合的字段可以禁用 doc_values 。注意,如果在已有的 index 做这些变更,是需要对 index 做 reindex的动作。
调优索引速度
使用 bulk 请求
Bulk 批量请求比单次 document 索引请求性能更好。为了验证最优批量请求的大小,可以做一个基准测试,用一个单节点跑一个单 shard 。先尝试索引100个document,然后 200, 然后400,等等。每次运行基准测试就相应加倍 document 的数量。取得索引速度最高的数值,就是最佳的bulk批量请求数。当然,批量请求也不是越多 document 越好。如果并发同时请求,太大的 bulk 请求会使集群内存压力变大,所以建议避免每次请次超过几十M,这样会获得较好的性能。
使用多进程/多线程去发送数据到Elasticsearch
一个单线程发送 bulk 请求似乎不能够发挥一个集群的索引能力。为了更好地利用集群的资源,应该使用多线程或多进程来发送数据,同时这将有助于减少每次 fsync 的成本。
一定要留意系统是否返回 TOO_MANY_REQUESTS (429) 代码。(通常Java client返回是EsRejectedExecutionException),这是表示Elasticsearch无法跟上当前的索引速度。发生这种情况时可以暂停一下索引一会再试。尝试更换 bulk 一个随机值或理想值。
对于相同大小的 bulk 请求,通过测试可以得到最优的线程数量。可以逐步增加线程数量直至到集群中的机器IO或CPU饱和。
增加 refresh_interval 刷新的间隔时间
index.refresh_interval的默认值是 1s,这迫使Elasticsearch集群每秒创建一个新的 segment (可以理解为Lucene 的索引文件)。增加这个值,例如30s,可以允许更大的segment写入,减后以后的segment合并压力。
在初始化索引时,可以禁用 refresh 和 replicas 数量
如果需要一次加载较大的数据量进 index 里面时,可以先禁用 refresh ,把 index.refresh_interval 设置成为 -1 ,把 index.number_of_replicas 设置成 0。暂时把多个shard副本关闭(即如果当前index发生损坏便用丢失数据),但是这样做可以大大加快索引速度。当初始化索引完成,可以将 index.refresh_interval 和 index.number_of_replicas 设置回原来的值。
禁用 swapping
把操作系统的虚拟内存交换区关闭。sysctl 里面添加 vm.swappiness = 1
确保有空闲的内存给文件系统缓存
文件系统缓存是为了缓冲磁盘的IO操作。至少确保有一半机器的内存保留给操作系统,而不是JAVA VM占用了全部内存。
使用更快的硬件
当然这个不用说了上SSD是最好的了。如果有多个SSD硬盘,可以配置成 RAID 0阵列取得更佳的IO性能。但是任何一个SSD损坏都有可能弄坏 index。通常正确的权衡是优化单的shard存储性能,然后添加 replicas 放在不同的节点。同时使用 snapshot 快照和 restore 功能去备份 index。
索引 buffer 大小
如果节点在做非常大的索引动作,需要确保 indices.memory.index_buffer_size足够大,最多可以设置为512M的buffer。除此之外增加这个值,性能通常不会得到改善。
Elasticsearch的活跃shard需要使用java的heap内存的百份比或者绝对值去作为一个共享缓冲区。非常活跃的shard自然会使用较频繁。
这个默认值是通常是10%,例如,如果JVM设置为10GB内存为heap,那么就会有1GB的索引缓冲区提供给大量的索引shard。
Elasticsearch 调优 (官方文档How To)的更多相关文章
- Elasticsearch官方文档离线访问实操指南
文章转载自:https://mp.weixin.qq.com/s/Cn9ddkj-cne5pKtfOgNPbg 延申一下,不仅能下载Elasticsearch官方文档,还能下载其他软件的官方文档,详看 ...
- Elasticsearch 7.4.0官方文档操作
官方文档地址 https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html 1.0.0 设置Elasticsea ...
- Spark SQL 官方文档-中文翻译
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...
- 从官方文档去学习之FreeMarker
一.前言 上一篇 <从现在开始,试着学会用官方文档去学习一个技术框架>提倡大家多去从官方文档学习技术,没有讲到具体的实践,本篇就拿一个案例具体的说一说,就是FreeMarker,选择这个框 ...
- cassandra 3.x官方文档(7)---内部原理之如何读写数据
写在前面 cassandra3.x官方文档的非官方翻译.翻译内容水平全依赖本人英文水平和对cassandra的理解.所以强烈建议阅读英文版cassandra 3.x 官方文档.此文档一半是翻译,一半是 ...
- Es官方文档整理-2.分片内部原理
Es官方文档整理-2.分片内部原理 1.集群 一个运行的Elasticsearch实例被称为一个节点,而集群是有一个或多个拥有相同claster.name配置的节点组成,他们共同承担数据和负 ...
- hbase官方文档(转)
FROM:http://www.just4e.com/hbase.html Apache HBase™ 参考指南 HBase 官方文档中文版 Copyright © 2012 Apache Soft ...
- HBase 官方文档
HBase 官方文档 Copyright © 2010 Apache Software Foundation, 盛大游戏-数据仓库团队-颜开(译) Revision History Revision ...
- HBase官方文档
HBase官方文档 目录 序 1. 入门 1.1. 介绍 1.2. 快速开始 2. Apache HBase (TM)配置 2.1. 基础条件 2.2. HBase 运行模式: 独立和分布式 2.3. ...
- HBase 官方文档0.90.4
HBase 官方文档0.90.4 Copyright © 2010 Apache Software Foundation, 盛大游戏-数据仓库团队-颜开(译) Revision History Rev ...
随机推荐
- angular1
1.双向绑定: 可进可出 2.依赖注入 函数有定义方定义 3.MVC M: Model 模型--数据 V: View 视图--表现层 C: Controller 控制器--业务逻辑 4.模板: {{ ...
- Bootstrap3系列:按钮式下拉菜单
1. 基本实例 把按钮放入 .btn-group 中,加入适当的菜单标签,让按钮触发下拉菜单. 1.1 示例代码 <div class="btn-group"> < ...
- 填坑系列:通过ESXi来配置IPMI
近日西安的天气很不错,可是看到从其他地方迁移来的主机在新环境下无法远程调试怪郁闷的,这就需要填坑,要不就会给后来者挖更大的坑. 今天遇到的坑是在IPMI的网络设置里面启用了VLAN标签之后,在新环境下 ...
- Core Java 总结(数据类型,表达式问题)
2016-10-18 整理 写一个程序判断整数的奇偶 public static boolean isOdd(int i){ return i % 2 == 1; } 百度百科定义:奇数(英文:odd ...
- three.js笔记
/*** 场景(scene) ***/ var scene = new THREE.Scene(); // 创建场景 scene.add(x); // 插入场景 /*** 相机(camera) *** ...
- SQL Tuning 基础概述07 - SQL Joins
N多年之前,刚刚接触SQL的时候,就被多表查询中的各种内连接,外连接,左外连接,右外连接等各式各样的连接弄的晕头转向. 更坑的是书上看到的各种表连接还有两种不同的写法, 比如对于表A,表B的查询 1, ...
- ASP.NET Core 中文文档 第二章 指南(4.2)添加 Controller
原文:Adding a controller 翻译:娄宇(Lyrics) 校对:刘怡(AlexLEWIS).何镇汐.夏申斌.孟帅洋(书缘) Model-View-Controller (MVC) 架构 ...
- HTML基本元素(四)
1.HTML框架 框架的作用就是把浏览器窗口划分成多个子窗口,而且每个子窗口都可以载入各自的HTML文档. *注意:html框架集与body同级,因此不能同时出现! 框架结构标签:<frames ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- Bash简明教程--变量
1. 前言 Bash是一门流行在*nix系统下的脚本语言.作为一门脚本语言,变量是一门语言的基本要素,在这篇教程中,我们将学习Bash中的变量是怎么表示的,以及变量相关的一些语法规则. 2. Bash ...