题目链接:

思路是:

相当于模拟约瑟夫环,仅仅只是是从顺逆时针同一时候进行的,然后就是顺逆时针走能够编写一个函数,仅仅只是是走的方向的标志变量相反。。还有就是为了(pos+flag+n-1)%n+1的妙用。。。

题目:

 The Dole Queue 

In a serious attempt to downsize (reduce) the dole queue, The New National Green Labour Rhinoceros Party has decided on the following strategy. Every day all dole applicants will be placed in a large circle, facing
inwards. Someone is arbitrarily chosen as number 1, and the rest are numbered counter-clockwise up to N (who will be standing on 1's left). Starting from 1 and moving counter-clockwise, one labour official counts off k applicants, while another official starts
from N and moves clockwise, counting m applicants. The two who are chosen are then sent off for retraining; if both officials pick the same person she (he) is sent off to become a politician. Each official then starts counting again at the next available person
and the process continues until no-one is left. Note that the two victims (sorry, trainees) leave the ring simultaneously, so it is possible for one official to count a person already selected by the other official.

Input

Write a program that will successively read in (in that order) the three numbers (N, k and m; k, m > 0, 0 < N < 20) and determine the order in which the applicants are sent off for retraining. Each set of three
numbers will be on a separate line and the end of data will be signalled by three zeroes (0 0 0).

Output

For each triplet, output a single line of numbers specifying the order in which people are chosen. Each number should be in a field of 3 characters. For pairs of numbers list the person chosen by the counter-clockwise
official first. Separate successive pairs (or singletons) by commas (but there should not be a trailing comma).

Sample input

10 4 3
0 0 0

Sample output

 4  8,  9  5,  3  1,  2  6,  10,  7

where  represents a space.

代码为:

#include<cstdio>
#include<cstring>
const int maxn=25+10;
bool vis[maxn];
int n,k,m; int Move(int pos,int flag,int step)
{
for(int i=1;i<=step;i++)
{
do
{
pos=(pos+flag+n-1)%n+1;
}while(vis[pos]);
}
return pos;
} int main()
{
int left,p1,p2;
while(~scanf("%d%d%d",&n,&k,&m))
{
if(n==0&&k==0&&m==0) return 0;
memset(vis,false,sizeof(vis));
p1=n;
p2=1;
left=n;
while(left)
{
p1=Move(p1,1,k);
p2=Move(p2,-1,m);
printf("%3d",p1);
left--;
if(p1!=p2)
{
printf("%3d",p2);
left--;
}
vis[p1]=vis[p2]=1;
if(left)
printf(",");
else
printf("\n");
}
}
return 0;
}

Sample output

 4  8,  9  5,  3  1,  2  6,  10,  7

uva133 The Dole Queue ( 约瑟夫环的模拟)的更多相关文章

  1. UVa133.The Dole Queue

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. 【紫书】uva133 The Dole Queue 参数偷懒技巧

    题意:约瑟夫问题,从两头双向删人.N个人逆时针1~N,从1开始逆时针每数k个人出列,同时从n开始顺时针每数m个人出列.若数到同一个人,则只有一个人出列.输出每次出列的人,用逗号可开每次的数据. 题解: ...

  3. UVA133 - The Dole Queue【紫书例题4.3】

    题意: n个人围成个圆,从1到n,一个人从1数到k就让第k个人离场,了另一个人从n开始数,数到m就让第m个人下去,直到剩下最后一个人,并依次输出离场人的序号. 水题,直接上标程了 #include&l ...

  4. 约瑟夫环(Josehpuse)的模拟

    约瑟夫环问题: 0,1,...,n-1这n个数字排成一个圆圈,从数字0开始每次从这个圆圈里删除第m个数字,求出这个圆圈里剩下的最后一个数字. 这里给出以下几种解法, 1.用队列模拟 每次将前m-1个元 ...

  5. Roman Roulette(约瑟夫环模拟)

    Roman Roulette Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  6. hdu 4841 圆桌问题(用vector模拟约瑟夫环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4841 圆桌问题 Time Limit: 3000/1000 MS (Java/Others)    M ...

  7. 小小c#算法题 - 12 - Joseph Circle(约瑟夫环)

    约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数(从1开始报数),数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又 ...

  8. tc 147 2 PeopleCircle(再见约瑟夫环)

    SRM 147 2 600PeopleCircle Problem Statement There are numMales males and numFemales females arranged ...

  9. 14.约瑟夫环问题[JosephusProblem]

    [题目] n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始,每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字).当一个数字删除后,从被删除数字的下一个继续删除 ...

随机推荐

  1. MyEclipse配置启动多个Tomcat

    在实际开发中常常会遇到多个项目同一时候进行,来回切换不太方便,这时可分别部署在多个tomcat下. 改动一些配置可同一时候启动多个tomcat 一開始查阅相关文档,看到一篇文章一个Myeclipse同 ...

  2. Node.js: What is the best "full stack web framework" (with scaffolding, MVC, ORM, etc.) based on Node.js / server-side JavaScript? - Quora

    Node.js: What is the best "full stack web framework" (with scaffolding, MVC, ORM, etc.) ba ...

  3. curl的封装

    首先要搭建一个httpserver,这里採用tomcat6为例: 过程:新建一个Servlet,并使用tomcat的默认port号8080监听,最后写一个jsp来測试能否够訪问该server 1)新建 ...

  4. Android 网络编程 Socket Http

    前言          欢迎大家我分享和推荐好用的代码段~~ 声明          欢迎转载,但请保留文章原始出处:          CSDN:http://www.csdn.net        ...

  5. adt-bundle更新eclipse,以及搭建android环境

    曾经开发一直去android官网下载adt-bundle的.里面已经包括了eclipse和android SDK,搭建android环境特别方便,仅仅须要3步:1.下载并安装jdk(也就是jar se ...

  6. Android中振动器(Vibrator)的使用

    系统获取Vibrator也是调用Context的getSystemService方法,接下来就可以调用Vibrator的方法控制手机振动了.Vibrator只有三个方法控制手机振动: 1.vibrat ...

  7. MongoDB 基础命令——数据库表的增删改查——遍历操作表中的记录

    分组排序查询最大记录 //对 "catagory" 不等于 null 的数据进行分组查询,且查询结果倒序 db.getCollection('userAccount').aggre ...

  8. Lucene全文检索的【增、删、改、查】 实例

    创建索引 Lucene在进行创建索引时,根据前面一篇博客,已经讲完了大体的流程,这里再简单说下: Directory directory = FSDirectory.open("/tmp/t ...

  9. POJ 1515 Street Directions

    题意: 一幅无向图  将尽量多的无向边定向成有向边  使得图强连通  无向图保证是连通的且没有重边 思路: 桥必须是双向的  因此先求边双连通分量  并将桥保存在ans中 每一个双连通分量内的边一定都 ...

  10. oracle数据库恢复与备份

    一.oracle数据库恢复 1.恢复刚才删除的一条数据 delete from emp e where e.empname='SMITH' select * from flashback_transa ...