GTY's birthday gift

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) 

【Problem Description】
FFZ's birthday is coming. GTY wants to give a gift to ZZF. He asked his gay friends what he should give to ZZF. One of them said, 'Nothing is more interesting than a number multiset.' So GTY decided to make a multiset for ZZF. Multiset can contain elements with same values. Because GTY wants to finish the gift as soon as possible, he will use JURUO magic. It allows him to choose two numbers a and b(a,b∈S), and add a+b to the multiset. GTY can use the magic for k times, and he wants the sum of the multiset is maximum, because the larger the sum is, the happier FFZ will be. You need to help him calculate the maximum sum of the multiset. 
 
【Input】
Multi test cases (about 3) . The first line contains two integers n and k (2≤n≤100000,1≤k≤1000000000). The second line contains n elements ai (1≤ai≤100000)separated by spaces , indicating the multiset S .
 
【Output】
For each case , print the maximum sum of the multiset (mod 10000007
).
 
【Sample Input】
  

【Sample Output】


【题意】

按照规则扩展一个集合k次,然后求其总和。

【分析】

扩展规则很简单,就是一个斐波那契数列,但是如果按照模拟的方法手动推算,复杂度对于本题的数据范围来说是不太合适的。
可以利用矩阵快速幂来迅速完成。
                    [1,,]
[S n-,F n,F n-] * [,,] =[S n,F n+,F n]
[,,]

剩下要注意的就是数据范围要开到long long了,因为可能涉及到10^9 * 10^9这样的数量级。

 /* ***********************************************
MYID : Chen Fan
LANG : G++
PROG : HDU5171
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> #define MOD 10000007 using namespace std; typedef struct matrixnod
{
long long m[][];
} matrix; matrix ex=
{
,,,
,,,
,,
}; matrix mat(matrix a,matrix b)
{
matrix c;
for (int i=;i<;i++)
for (int j=;j<;j++)
{
c.m[i][j]=;
for (int k=;k<;k++) c.m[i][j]+=(a.m[i][k]*b.m[k][j])%MOD;
c.m[i][j]%=MOD;
}
return c;
} matrix mat2(matrix a,matrix b)
{
matrix c;
for (int j=;j<;j++)
{
c.m[][j]=;
for (int k=;k<;k++) c.m[][j]+=(a.m[][k]*b.m[k][j])%MOD;
c.m[][j]%=MOD;
}
return c;
} matrix doexpmat(matrix b,int n)
{
matrix a=
{
,,,
,,,
,,
};
while(n)
{
if (n&) a=mat(a,b);
n=n>>;
b=mat(b,b);
}
return a;
} int main()
{
int n,k;
int a[];
while(scanf("%d%d",&n,&k)==)
{
long long sum=;
for (int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum=(sum+a[i])%MOD;
}
sort(&a[],&a[n+]);
matrix start;
start.m[][]=;
start.m[][]=a[n];
start.m[][]=a[n-];
start=mat2(start,doexpmat(ex,k)); sum=(sum+start.m[][])%MOD;
printf("%lld\n",sum);
} return ;
}

HDU 5171 GTY's birthday gift 矩阵快速幂的更多相关文章

  1. HDU5171 GTY's birthday gift —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5171 GTY's birthday gift Time Limit: 2000/1000 MS (Java/Others)  ...

  2. BC#29A:GTY's math problem(math) B:GTY's birthday gift(矩阵快速幂)

    A: HDU5170 这题让比较a^b与c^d的大小.1<=a,b,c,d<=1000. 显然这题没法直接做,要利用对数来求,但是在math库中有关的对数函数返回的都是浮点数,所以这又要涉 ...

  3. hdu 5171 GTY's birthday gift(数学,矩阵快速幂)

    题意: 开始时集合中有n个数. 现在要进行k次操作. 每次操作:从集合中挑最大的两个数a,b进行相加,得到的数添加进集合中. 以此反复k次. 问最后集合中所有数的和是多少. (2≤n≤100000,1 ...

  4. hdu 5171 GTY's birthday gift

    GTY's birthday gift 问题描述 GTY的朋友ZZF的生日要来了,GTY问他的基友送什么礼物比较好,他的一个基友说送一个可重集吧!于是GTY找到了一个可重集S,GTY能使用神犇魔法k次 ...

  5. HDU 2855 斐波那契+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...

  6. HDU 5950:Recursive sequence(矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f ...

  7. HDU 3292 【佩尔方程求解 && 矩阵快速幂】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=3292 No more tricks, Mr Nanguo Time Limit: 3000/1000 M ...

  8. HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...

  9. hdu 4565 So Easy! (共轭构造+矩阵快速幂)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...

随机推荐

  1. nefu 115 斐波那契的整除

    Description 已知斐波那契数列有如下递归定义,f(1)=1,f(2)=1, 且n>=3,f(n)=f(n-1)+f(n-2),它的前几项可以表示为1, 1,2 ,3 ,5 ,8,13, ...

  2. docker !veth

    https://github.com/docker/docker/issues/11889

  3. webstorm比dreamweaver强大的地方 转

    比dw强大的地方有: . 对js的开发有长足的支持,那些自动提示,代码主题,调试之类的我就不说了,主要是对流行技术的支持,比如Node.js,less,sass,jq,ext,prototype等框架 ...

  4. asp中的动态数组

    <% Dim array1(),i ReDim array1(3)array1(3)=10response.Write(array1(3)&"<br>") ...

  5. listener.ora

    EOF YESTERDAY=`cat /database/log/tns_log/yesterday.out` TODAY=`date '+%d-%b-%Y'` echo $YESTERDAY  $T ...

  6. 1.1 sikuli 安装

    JRE7不支持sikuli,必须下载JRE6   更新号必须大于35 sikuli下载: http://www.cr173.com/soft/52775.html 或参照 http://www.cnb ...

  7. js中子页面父页面方法和变量相互调用

    (1)子页面调用父页面的方法或者变量: window.parent.方法()或者变量名window.parent相当于定位到父页面 之后的操作和在父页面中写代码一样写 window.parent.aa ...

  8. execlp("ls","flw","-?",(char *)0) 为什么少了最后的一个参数就不行?

    execlp("ls","flw","-?",(char *)0) 为什么少了最后的一个参数就不行?

  9. 分布式数据库Cobar

    Cobar简介: Cobar是关系型数据库的分布式处理系统,它可以在分布式的环境下看上去像传统数据库一样为您提供海量数据服务. 产品在阿里巴巴B2B公司已经稳定运行了3年以上. 目前已经接管了3000 ...

  10. 转:Selenium中的几种等待方式,需特别注意implicitlyWait的用法

    最近在项目过程中使用selenium 判断元素是否存在的时候 遇到一个很坑爹的问题, 用以下方法执行的时候每次都会等待很长一段时间,原因是因为对selenium实现方法了解不足导致一直找不到解决方法. ...