VS2012下基于Glut 矩阵变换示例程序:
也可以使用我们自己的矩阵运算来实现OpenGL下的glTranslatef相应的旋转变换。需要注意的是OpenGL下的矩阵是列优先存储的。
示例通过矩阵运算使得圆柱或者甜圈自动绕Y轴旋转,可以单击鼠标右键来弹出菜单选择是否显示坐标轴、正视图或者是透视图、是否打印变换矩阵、显示圆柱还是甜圈。程序用到math3d中的矩阵相关函数。由于绘制的坐标轴并未参加矩阵变换,在运行过程中会发现坐标轴并不会在定时器作用下不断旋转。
源代码:
GlutTransformDemo
// GlutTransformDemo.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <gl/glut.h>
#include <math.h>
#include "math3d.h"
//圆周率宏
#define GL_PI 3.1415f
//获取屏幕的宽度
GLint SCREEN_WIDTH=0;
GLint SCREEN_HEIGHT=0;
//设置程序的窗口大小
GLint windowWidth=400;
GLint windowHeight=300;
//绕x轴旋转角度
GLfloat xRotAngle=0.0f;
//绕y轴旋转角度
GLfloat yRotAngle=0.0f;
//受支持的点大小范围
GLfloat sizes[2];
//受支持的点大小增量
GLfloat step;
//最大的投影矩阵堆栈深度
GLint iMaxProjectionStackDepth;
//最大的模型视图矩阵堆栈深度
GLint iMaxModeviewStackDepth;
//最大的纹理矩阵堆栈深度
GLint iMaxTextureStackDepth; GLint iCoordinateaxis=2;//是否显示坐标轴
GLint iProjectionMode=1;//投影模式
GLint iPrintMatrix=1;//是否打印变换矩阵
GLint iCylinder=1;//显示圆柱还是甜圈
void changSize(GLint w,GLint h); void DrawTorus(M3DMatrix44f mTransform){
// 大圆只存在于 xy 平面,
// 小圆存在于 xyz 空间中,
// 其圆心是大圆圆周上的点。
// 小圆环大圆半径方向为起始旋转一周形成的。
// 由于 z 轴垂直于 xy 平面,
// 又因为大圆的半径位于 xy 平面,
// 因此,z 轴垂直于大圆的半径(垂直于面,垂直于线),
// 因此,z 轴与大圆的半径方向是正交的。
// 小圆位于 z 轴与大圆半径方向形成的平面,
// 后面计算具体点的位置是基于上面的描述。 // 大圆半径
GLfloat majorRadius = 55.0f;
// 小圆半径
GLfloat minorRadius = 15.0f;
// 大圆圆周被切分的点数
GLint numMajor = 50;
// 小圆圆周被切分的点数
GLint numMinor = 20;
M3DVector3f objectVertex; // Vertex in object/eye space
M3DVector3f transformedVertex; // New Transformed vertex
// 每个点对应的弧度数
double majorStep = 2.0f*M3D_PI / numMajor;
double minorStep = 2.0f*M3D_PI / numMinor;
int i, j; // 对于大圆上的点进行迭代
for (i=0; i<numMajor; ++i)
{
// 第一个点对应的弧度
double a0 = i * majorStep;
// 第二个点对应的弧度
double a1 = a0 + majorStep;
// 第一个点在 x 与 y 轴上的单位长度
GLfloat x0 = (GLfloat) cos(a0);
GLfloat y0 = (GLfloat) sin(a0);
// 第二个点在 x 与 y 轴上的单位长度
GLfloat x1 = (GLfloat) cos(a1);
GLfloat y1 = (GLfloat) sin(a1); glBegin(GL_TRIANGLE_STRIP);
// 对小圆上的点进行迭代
for (j=0; j<=numMinor; ++j)
{
// 小圆上点对应的弧度
double b = j * minorStep;
// 小圆上点在半径方向的单位长度
GLfloat c = (GLfloat) cos(b);
// 小圆上点,在xy 平面的分量长度
GLfloat r = minorRadius * c + majorRadius;
// 小圆上点在 z 轴上的长度
GLfloat z = minorRadius * (GLfloat) sin(b); // 小圆上点坐标确认的过程:将该点分为在 z 轴 与 大圆半径方向,由于大圆半径只存在于 xy 平面,就相对容易求到 x , y 坐标。 // First point
objectVertex[0] = x0*r;// 小圆上点对应的 x 坐标
objectVertex[1] = y0*r;// 小圆上点对应的 y 坐标
objectVertex[2] = z; // 小圆上点对应的 z 坐标
m3dTransformVector3(transformedVertex, objectVertex, mTransform);
glVertex3fv(transformedVertex); // Second point
objectVertex[0] = x1*r;
objectVertex[1] = y1*r;
objectVertex[2] = z;
m3dTransformVector3(transformedVertex, objectVertex, mTransform);
glVertex3fv(transformedVertex);
}
glEnd();
}
} void DrawCylinder(M3DMatrix44f mTransform){
// 大圆半径
GLfloat majorRadius = 55.0f;
// 大圆圆周被切分的点数
GLint numMajor = 100; M3DVector3f objectVertex; // Vertex in object/eye space
M3DVector3f transformedVertex; // New Transformed vertex
// 每个点对应的弧度数
double majorStep = 2.0f*M3D_PI / numMajor; glBegin(GL_TRIANGLE_STRIP);
// 对于大圆上的点进行迭代
for (int i=0; i<=numMajor; ++i)
{ // 第一个点对应的弧度
double a0 = i * majorStep;
// 第二个点对应的弧度
double a1 = a0 - majorStep;
// 第一个点在 x 与 y 轴上的单位长度
GLfloat x0 = (GLfloat) cos(a0);
GLfloat y0 = (GLfloat) sin(a0);
// 第二个点在 x 与 y 轴上的单位长度
GLfloat x1 = (GLfloat) cos(a1);
GLfloat y1 = (GLfloat) sin(a1); // First point
objectVertex[0] = x0*majorRadius;// 小圆上点对应的 x 坐标
objectVertex[1] = y0*majorRadius;// 小圆上点对应的 y 坐标
objectVertex[2] = 50.0f; // 小圆上点对应的 z 坐标
m3dTransformVector3(transformedVertex, objectVertex, mTransform);
glVertex3fv(transformedVertex); // Second point
objectVertex[0] = x1*majorRadius;
objectVertex[1] = y1*majorRadius;
objectVertex[2] = -50.0f;
m3dTransformVector3(transformedVertex, objectVertex, mTransform);
glVertex3fv(transformedVertex);
}
glEnd();
} //菜单回调函数
void processMenu(int value){
switch(value){
case 1:
iCoordinateaxis=1;
break;
case 2:
iCoordinateaxis=2;
break;
case 3:
iProjectionMode=1;
//强制调用窗口大小变化回调函数,更改投影模式为正交投影
changSize(glutGet(GLUT_WINDOW_WIDTH),glutGet(GLUT_WINDOW_HEIGHT));
break;
case 4:
iProjectionMode=2;
//强制调用窗口大小变化回调函数,更改投影模式为透视投影
changSize(glutGet(GLUT_WINDOW_WIDTH),glutGet(GLUT_WINDOW_HEIGHT));
break;
case 5:
iPrintMatrix=1;
break;
case 6:
iPrintMatrix=2;
break;
case 7:
iCylinder=1;
break;
case 8:
iCylinder=2;
break;
default:
break;
}
//重新绘制
glutPostRedisplay();
} //显示回调函数
void renderScreen(void){
M3DMatrix44f transformationMatrix; // Storeage for rotation matrix
static GLfloat yRot = 0.0f; // Rotation angle for animation
yRot += 0.5f;
//将窗口颜色清理为黑色
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
//把整个窗口清理为当前清理颜色:黑色;清除深度缓冲区。
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); //将当前Matrix状态入栈
glPushMatrix();
if(2==iProjectionMode)
glTranslatef(0.0f, 0.0f, -250.0f); //透视投影为便于观察整个坐标系往内移动250个单位
//坐标系绕x轴旋转xRotAngle
glRotatef(xRotAngle,1.0f,0.0f,0.0f);
//坐标系绕y轴旋转yRotAngle
glRotatef(yRotAngle,0.0f,1.0f,0.0f);
//进行平滑处理
glEnable(GL_POINT_SMOOTH);
glHint(GL_POINT_SMOOTH,GL_NICEST);
glEnable(GL_LINE_SMOOTH);
glHint(GL_LINE_SMOOTH,GL_NICEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); if(1==iCoordinateaxis){
glColor3f(1.0f,1.0f,1.0f);
glBegin(GL_LINES);
glVertex3f(-90.0f,00.0f,0.0f);
glVertex3f(90.0f,0.0f,0.0f);
glVertex3f(0.0f,-90.0f,0.0f);
glVertex3f(0.0f,90.0f,0.0f);
glVertex3f(0.0f,0.0f,-90.0f);
glVertex3f(0.0f,0.0f,90.0f);
glEnd(); glPushMatrix();
glTranslatef(90.0f,0.0f,0.0f);
glRotatef(90.0f,0.0f,1.0f,0.0f);
glutSolidCone(3,6,10,10);
glPopMatrix(); glPushMatrix();
glTranslatef(0.0f,90.0f,0.0f);
glRotatef(-90.0f,1.0f,0.0f,0.0f);
glutSolidCone(3,6,10,10);
glPopMatrix(); glPushMatrix();
glTranslatef(0.0f,0.0f,90.0f);
glRotatef(70.0f,0.0f,0.0f,1.0f);
glutSolidCone(3,6,10,10);
glPopMatrix();
}
glColor3f(0.5f,0.5f,1.0f);
memset(transformationMatrix,0,sizeof(transformationMatrix));
//打印变换矩阵
if(2==iPrintMatrix){
printf("--------------------------------------\n");
for(int i=0;i<4;i++){
for(int j=0;j<4;j++){
printf("%9.6f ",transformationMatrix[4*j+i]);
}
printf("\n");
}
}
m3dRotationMatrix44(transformationMatrix, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f);
//transformationMatrix[12]、transformationMatrix[13] = 0.0f、transformationMatrix[14] = 0.0f是平移参数,分别代表x、y、 z轴的偏移参数。
//transformationMatrix[15]代表缩放为原来的1/transformationMatrix[15]
transformationMatrix[12] = 0.0f;
transformationMatrix[13] = 0.0f;
transformationMatrix[14] = 0.0f;
transformationMatrix[15] = 2.0f;
//打印变换矩阵
if(2==iPrintMatrix){
printf("--------------------------------------\n");
for(int i=0;i<4;i++){
for(int j=0;j<4;j++){
printf("%9.6f ",transformationMatrix[4*j+i]);
}
printf("\n");
}
} if(1==iCylinder)
DrawCylinder(transformationMatrix);
else
DrawTorus(transformationMatrix); //恢复压入栈的Matrix
glPopMatrix();
//交换两个缓冲区的指针
glutSwapBuffers();
} //设置Redering State
void setupRederingState(void){
glEnable(GL_DEPTH_TEST); //使能深度测试
glFrontFace(GL_CCW); //多边形逆时针方向为正面
//glEnable(GL_CULL_FACE); //不显示背面
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);//背面正面均使用线填充 //设置清理颜色为黑色
glClearColor(0.0f,0.0,0.0,1.0f);
//设置绘画颜色为绿色
glColor3f(1.0f,1.0f,0.0f);
//使能深度测试
glEnable(GL_DEPTH_TEST);
//获取受支持的点大小范围
glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
//获取受支持的点大小增量
glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);
//获取最大的投影矩阵堆栈深度
glGetIntegerv( GL_MAX_PROJECTION_STACK_DEPTH,&iMaxProjectionStackDepth);
//获取最大的模型视图矩阵堆栈深度
glGetIntegerv( GL_MAX_MODELVIEW_STACK_DEPTH,&iMaxModeviewStackDepth);
//获取最大的纹理矩阵堆栈深度
glGetIntegerv( GL_MAX_TEXTURE_STACK_DEPTH,&iMaxTextureStackDepth);
printf("point size range:%f-%f\n",sizes[0],sizes[1]);
printf("point step:%f\n",step);
printf("iMaxProjectionStackDepth=%d\n",iMaxProjectionStackDepth);
printf("iMaxModeviewStackDepth=%d\n",iMaxModeviewStackDepth);
printf("iMaxTextureStackDepth=%d\n",iMaxTextureStackDepth);
} //窗口大小变化回调函数
void changSize(GLint w,GLint h){
//横宽比率
GLfloat ratio;
//设置坐标系为x(-100.0f,100.0f)、y(-100.0f,100.0f)、z(-100.0f,100.0f)
GLfloat coordinatesize=100.0f;
//窗口宽高为零直接返回
if((w==0)||(h==0))
return;
//设置视口和窗口大小一致
glViewport(0,0,w,h);
//对投影矩阵应用随后的矩阵操作
glMatrixMode(GL_PROJECTION);
//重置当前指定的矩阵为单位矩阵
glLoadIdentity();
ratio=(GLfloat)w/(GLfloat)h;
//正交投影
if(1==iProjectionMode){
printf("glOrtho\n");
if(w<h)
glOrtho(-coordinatesize,coordinatesize,-coordinatesize/ratio,coordinatesize/ratio,-coordinatesize,coordinatesize);
else
glOrtho(-coordinatesize*ratio,coordinatesize*ratio,-coordinatesize,coordinatesize,-coordinatesize,coordinatesize);
//当前矩阵设置为模型视图矩阵
glMatrixMode(GL_MODELVIEW);
//重置当前指定的矩阵为单位矩阵
glLoadIdentity();
}
else{
printf("gluPerspective\n");
gluPerspective(45,ratio,10.0f,500.0f);
//当前矩阵设置为模型视图矩阵
glMatrixMode(GL_MODELVIEW);
//重置当前指定的矩阵为单位矩阵
glLoadIdentity();
} } //按键输入处理回调函数
void specialKey(int key,int x,int y){ if(key==GLUT_KEY_UP){
xRotAngle-=5.0f;
}
else if(key==GLUT_KEY_DOWN){
xRotAngle+=5.0f;
}
else if(key==GLUT_KEY_LEFT){
yRotAngle-=5.0f;
}
else if(key==GLUT_KEY_RIGHT){
yRotAngle+=5.0f;
}
//重新绘制
glutPostRedisplay();
} void timerFunc(int value)
{
glutPostRedisplay();
glutTimerFunc(10, timerFunc, 1);
} int main(int argc, char* argv[])
{
//菜单
GLint iMainMenu;
GLint iCoordinateaxisMenu;
GLint iOrthoOrPerspectMenu;
GLint iPrintmatrix;
GLint iCylinderOrTorus;
//初始化glut
glutInit(&argc,argv);
//使用双缓冲区、深度缓冲区。
glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGBA|GLUT_DEPTH);
//获取系统的宽像素
SCREEN_WIDTH=glutGet(GLUT_SCREEN_WIDTH);
//获取系统的高像素
SCREEN_HEIGHT=glutGet(GLUT_SCREEN_HEIGHT);
//创建窗口,窗口名字为OpenGL Transform Demo
glutCreateWindow("OpenGL Transform Demo");
//设置窗口大小
glutReshapeWindow(windowWidth,windowHeight);
//窗口居中显示
glutPositionWindow((SCREEN_WIDTH-windowWidth)/2,(SCREEN_HEIGHT-windowHeight)/2);
//窗口大小变化时的处理函数
glutReshapeFunc(changSize);
//设置显示回调函数
glutDisplayFunc(renderScreen);
//设置按键输入处理回调函数
glutSpecialFunc(specialKey);
//菜单回调函数
iCoordinateaxisMenu=glutCreateMenu(processMenu);
//添加菜单
glutAddMenuEntry("Display coordinate axis",1);
glutAddMenuEntry("Don't dispaly coordinate axis",2);
iOrthoOrPerspectMenu=glutCreateMenu(processMenu);
glutAddMenuEntry("Ortho",3);
glutAddMenuEntry("Perspect",4);
iPrintmatrix=glutCreateMenu(processMenu);
glutAddMenuEntry("Don't print Matrix",5);
glutAddMenuEntry("Print Matrix",6);
iCylinderOrTorus=glutCreateMenu(processMenu);
glutAddMenuEntry("Cylinder",7);
glutAddMenuEntry("Torus",8);
iMainMenu=glutCreateMenu(processMenu);
glutAddSubMenu("Whether Display coordinate axis",iCoordinateaxisMenu);
glutAddSubMenu("Ortho Or Perspect",iOrthoOrPerspectMenu);
glutAddSubMenu("Whether Print Matrix",iPrintmatrix);
glutAddSubMenu("Cylinder or torus",iCylinderOrTorus);
//将菜单榜定到鼠标右键上
glutAttachMenu(GLUT_RIGHT_BUTTON);
glutTimerFunc(10,timerFunc, 1);
//设置全局渲染参数
setupRederingState();
glutMainLoop(); return 0;
}
math3d.h
// Math3d.h
// Header file for the Math3d library. The C-Runtime has math.h, this file and the
// accompanying math.c are meant to suppliment math.h by adding geometry/math routines
// useful for graphics, simulation, and physics applications (3D stuff).
// Richard S. Wright Jr.
#ifndef _MATH3D_LIBRARY__
#define _MATH3D_LIBRARY__ #include <math.h>
#include <memory.h> ///////////////////////////////////////////////////////////////////////////////
// Data structures and containers
// Much thought went into how these are declared. Many libraries declare these
// as structures with x, y, z data members. However structure alignment issues
// could limit the portability of code based on such structures, or the binary
// compatibility of data files (more likely) that contain such structures across
// compilers/platforms. Arrays are always tightly packed, and are more efficient
// for moving blocks of data around (usually).
typedef float M3DVector3f[3]; // Vector of three floats (x, y, z)
typedef double M3DVector3d[3]; // Vector of three doubles (x, y, z) typedef float M3DVector4f[4]; // Lesser used... Do we really need these?
typedef double M3DVector4d[4]; // Yes, occasionaly typedef float M3DVector2f[2]; // 3D points = 3D Vectors, but we need a
typedef double M3DVector2d[2]; // 2D representations sometimes... (x,y) order // 3x3 matrix - column major. X vector is 0, 1, 2, etc.
// 0 3 6
// 1 4 7
// 2 5 8
typedef float M3DMatrix33f[9]; // A 3 x 3 matrix, column major (floats) - OpenGL Style
typedef double M3DMatrix33d[9]; // A 3 x 3 matrix, column major (doubles) - OpenGL Style // 4x4 matrix - column major. X vector is 0, 1, 2, etc.
// 0 4 8 12
// 1 5 9 13
// 2 6 10 14
// 3 7 11 15
typedef float M3DMatrix44f[16]; // A 4 X 4 matrix, column major (floats) - OpenGL style
typedef double M3DMatrix44d[16]; // A 4 x 4 matrix, column major (doubles) - OpenGL style ///////////////////////////////////////////////////////////////////////////////
// Useful constants
#define M3D_PI (3.14159265358979323846)
#define M3D_2PI (2.0 * M3D_PI)
#define M3D_PI_DIV_180 (0.017453292519943296)
#define M3D_INV_PI_DIV_180 (57.2957795130823229) ///////////////////////////////////////////////////////////////////////////////
// Useful shortcuts and macros
// Radians are king... but we need a way to swap back and forth
#define m3dDegToRad(x) ((x)*M3D_PI_DIV_180)
#define m3dRadToDeg(x) ((x)*M3D_INV_PI_DIV_180) // Hour angles
#define m3dHrToDeg(x) ((x) * (1.0 / 15.0))
#define m3dHrToRad(x) m3dDegToRad(m3dHrToDeg(x)) #define m3dDegToHr(x) ((x) * 15.0))
#define m3dRadToHr(x) m3dDegToHr(m3dRadToDeg(x)) // Returns the same number if it is a power of
// two. Returns a larger integer if it is not a
// power of two. The larger integer is the next
// highest power of two.
inline unsigned int m3dIsPOW2(unsigned int iValue)
{
unsigned int nPow2 = 1; while(iValue > nPow2)
nPow2 = (nPow2 << 1); return nPow2;
} ///////////////////////////////////////////////////////////////////////////////
// Inline accessor functions for people who just can't count to 3 - Vectors
#define m3dGetVectorX(v) (v[0])
#define m3dGetVectorY(v) (v[1])
#define m3dGetVectorZ(v) (v[2])
#define m3dGetVectorW(v) (v[3]) #define m3dSetVectorX(v, x) ((v)[0] = (x))
#define m3dSetVectorY(v, y) ((v)[1] = (y))
#define m3dSetVectorZ(v, z) ((v)[2] = (z))
#define m3dSetVectorW(v, w) ((v)[3] = (w)) ///////////////////////////////////////////////////////////////////////////////
// Inline vector functions
// Load Vector with (x, y, z, w).
inline void m3dLoadVector2(M3DVector2f v, float x, float y)
{ v[0] = x; v[1] = y; }
inline void m3dLoadVector2(M3DVector2d v, float x, float y)
{ v[0] = x; v[1] = y; }
inline void m3dLoadVector3(M3DVector3f v, float x, float y, float z)
{ v[0] = x; v[1] = y; v[2] = z; }
inline void m3dLoadVector3(M3DVector3d v, double x, double y, double z)
{ v[0] = x; v[1] = y; v[2] = z; }
inline void m3dLoadVector4(M3DVector4f v, float x, float y, float z, float w)
{ v[0] = x; v[1] = y; v[2] = z; v[3] = w;}
inline void m3dLoadVector4(M3DVector4d v, double x, double y, double z, double w)
{ v[0] = x; v[1] = y; v[2] = z; v[3] = w;} ////////////////////////////////////////////////////////////////////////////////
// Copy vector src into vector dst
inline void m3dCopyVector2(M3DVector2f dst, const M3DVector2f src) { memcpy(dst, src, sizeof(M3DVector2f)); }
inline void m3dCopyVector2(M3DVector2d dst, const M3DVector2d src) { memcpy(dst, src, sizeof(M3DVector2d)); } inline void m3dCopyVector3(M3DVector3f dst, const M3DVector3f src) { memcpy(dst, src, sizeof(M3DVector3f)); }
inline void m3dCopyVector3(M3DVector3d dst, const M3DVector3d src) { memcpy(dst, src, sizeof(M3DVector3d)); } inline void m3dCopyVector4(M3DVector4f dst, const M3DVector4f src) { memcpy(dst, src, sizeof(M3DVector4f)); }
inline void m3dCopyVector4(M3DVector4d dst, const M3DVector4d src) { memcpy(dst, src, sizeof(M3DVector4d)); } ////////////////////////////////////////////////////////////////////////////////
// Add Vectors (r, a, b) r = a + b
inline void m3dAddVectors2(M3DVector2f r, const M3DVector2f a, const M3DVector2f b)
{ r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; }
inline void m3dAddVectors2(M3DVector2d r, const M3DVector2d a, const M3DVector2d b)
{ r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; } inline void m3dAddVectors3(M3DVector3f r, const M3DVector3f a, const M3DVector3f b)
{ r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; }
inline void m3dAddVectors3(M3DVector3d r, const M3DVector3d a, const M3DVector3d b)
{ r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; } inline void m3dAddVectors4(M3DVector4f r, const M3DVector4f a, const M3DVector4f b)
{ r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; r[3] = a[3] + b[3]; }
inline void m3dAddVectors4(M3DVector4d r, const M3DVector4d a, const M3DVector4d b)
{ r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; r[3] = a[3] + b[3]; } ////////////////////////////////////////////////////////////////////////////////
// Subtract Vectors (r, a, b) r = a - b
inline void m3dSubtractVectors2(M3DVector2f r, const M3DVector2f a, const M3DVector2f b)
{ r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; }
inline void m3dSubtractVectors2(M3DVector2d r, const M3DVector2d a, const M3DVector2d b)
{ r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; } inline void m3dSubtractVectors3(M3DVector3f r, const M3DVector3f a, const M3DVector3f b)
{ r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; r[2] = a[2] - b[2]; }
inline void m3dSubtractVectors3(M3DVector3d r, const M3DVector3d a, const M3DVector3d b)
{ r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; r[2] = a[2] - b[2]; } inline void m3dSubtractVectors4(M3DVector4f r, const M3DVector4f a, const M3DVector4f b)
{ r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; r[2] = a[2] - b[2]; r[3] = a[3] - b[3]; }
inline void m3dSubtractVectors4(M3DVector4d r, const M3DVector4d a, const M3DVector4d b)
{ r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; r[2] = a[2] - b[2]; r[3] = a[3] - b[3]; } ///////////////////////////////////////////////////////////////////////////////////////
// Scale Vectors (in place)
inline void m3dScaleVector2(M3DVector2f v, float scale)
{ v[0] *= scale; v[1] *= scale; }
inline void m3dScaleVector2(M3DVector2d v, double scale)
{ v[0] *= scale; v[1] *= scale; } inline void m3dScaleVector3(M3DVector3f v, float scale)
{ v[0] *= scale; v[1] *= scale; v[2] *= scale; }
inline void m3dScaleVector3(M3DVector3d v, double scale)
{ v[0] *= scale; v[1] *= scale; v[2] *= scale; } inline void m3dScaleVector4(M3DVector4f v, float scale)
{ v[0] *= scale; v[1] *= scale; v[2] *= scale; v[3] *= scale; }
inline void m3dScaleVector4(M3DVector4d v, double scale)
{ v[0] *= scale; v[1] *= scale; v[2] *= scale; v[3] *= scale; } //////////////////////////////////////////////////////////////////////////////////////
// Cross Product
// u x v = result
// We only need one version for floats, and one version for doubles. A 3 component
// vector fits in a 4 component vector. If M3DVector4d or M3DVector4f are passed
// we will be OK because 4th component is not used.
inline void m3dCrossProduct(M3DVector3f result, const M3DVector3f u, const M3DVector3f v)
{
result[0] = u[1]*v[2] - v[1]*u[2];
result[1] = -u[0]*v[2] + v[0]*u[2];
result[2] = u[0]*v[1] - v[0]*u[1];
} inline void m3dCrossProduct(M3DVector3d result, const M3DVector3d u, const M3DVector3d v)
{
result[0] = u[1]*v[2] - v[1]*u[2];
result[1] = -u[0]*v[2] + v[0]*u[2];
result[2] = u[0]*v[1] - v[0]*u[1];
} //////////////////////////////////////////////////////////////////////////////////////
// Dot Product, only for three component vectors
// return u dot v
inline float m3dDotProduct(const M3DVector3f u, const M3DVector3f v)
{ return u[0]*v[0] + u[1]*v[1] + u[2]*v[2]; } inline double m3dDotProduct(const M3DVector3d u, const M3DVector3d v)
{ return u[0]*v[0] + u[1]*v[1] + u[2]*v[2]; } //////////////////////////////////////////////////////////////////////////////////////
// Angle between vectors, only for three component vectors. Angle is in radians...
inline float m3dGetAngleBetweenVectors(const M3DVector3f u, const M3DVector3f v)
{
float dTemp = m3dDotProduct(u, v);
return float(acos(double(dTemp)));
} inline double m3dGetAngleBetweenVectors(const M3DVector3d u, const M3DVector3d v)
{
double dTemp = m3dDotProduct(u, v);
return acos(dTemp);
} //////////////////////////////////////////////////////////////////////////////////////
// Get Square of a vectors length
// Only for three component vectors
inline float m3dGetVectorLengthSquared(const M3DVector3f u)
{ return (u[0] * u[0]) + (u[1] * u[1]) + (u[2] * u[2]); } inline double m3dGetVectorLengthSquared(const M3DVector3d u)
{ return (u[0] * u[0]) + (u[1] * u[1]) + (u[2] * u[2]); } //////////////////////////////////////////////////////////////////////////////////////
// Get lenght of vector
// Only for three component vectors.
inline float m3dGetVectorLength(const M3DVector3f u)
{ return float(sqrt(double(m3dGetVectorLengthSquared(u)))); } inline double m3dGetVectorLength(const M3DVector3d u)
{ return sqrt(m3dGetVectorLengthSquared(u)); } //////////////////////////////////////////////////////////////////////////////////////
// Normalize a vector
// Scale a vector to unit length. Easy, just scale the vector by it's length
inline void m3dNormalizeVector(M3DVector3f u)
{ m3dScaleVector3(u, 1.0f / m3dGetVectorLength(u)); } inline void m3dNormalizeVector(M3DVector3d u)
{ m3dScaleVector3(u, 1.0 / m3dGetVectorLength(u)); } //////////////////////////////////////////////////////////////////////////////////////
// Get the distance between two points. The distance between two points is just
// the magnitude of the difference between two vectors
// Located in math.cpp
float m3dGetDistanceSquared(const M3DVector3f u, const M3DVector3f v);
double m3dGetDistanceSquared(const M3DVector3d u, const M3DVector3d v); inline double m3dGetDistance(const M3DVector3d u, const M3DVector3d v)
{ return sqrt(m3dGetDistanceSquared(u, v)); } inline float m3dGetDistance(const M3DVector3f u, const M3DVector3f v)
{ return float(sqrt(m3dGetDistanceSquared(u, v))); } inline float m3dGetMagnitudeSquared(const M3DVector3f u) { return u[0]*u[0] + u[1]*u[1] + u[2]*u[2]; }
inline double m3dGetMagnitudeSquared(const M3DVector3d u) { return u[0]*u[0] + u[1]*u[1] + u[2]*u[2]; } inline float m3dGetMagnitude(const M3DVector3f u) { return float(sqrt(m3dGetMagnitudeSquared(u))); }
inline double m3dGetMagnitude(const M3DVector3d u) { return sqrt(m3dGetMagnitudeSquared(u)); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Matrix functions
// Both floating point and double precision 3x3 and 4x4 matricies are supported.
// No support is included for arbitrarily dimensioned matricies on purpose, since
// the 3x3 and 4x4 matrix routines are the most common for the purposes of this
// library. Matrices are column major, like OpenGL matrices.
// Unlike the vector functions, some of these are going to have to not be inlined,
// although many will be. // Copy Matrix
// Brain-dead memcpy
inline void m3dCopyMatrix33(M3DMatrix33f dst, const M3DMatrix33f src)
{ memcpy(dst, src, sizeof(M3DMatrix33f)); } inline void m3dCopyMatrix33(M3DMatrix33d dst, const M3DMatrix33d src)
{ memcpy(dst, src, sizeof(M3DMatrix33d)); } inline void m3dCopyMatrix44(M3DMatrix44f dst, const M3DMatrix44f src)
{ memcpy(dst, src, sizeof(M3DMatrix44f)); } inline void m3dCopyMatrix44(M3DMatrix44d dst, const M3DMatrix44d src)
{ memcpy(dst, src, sizeof(M3DMatrix44d)); } // LoadIdentity
// Implemented in Math3d.cpp
void m3dLoadIdentity33(M3DMatrix33f m);
void m3dLoadIdentity33(M3DMatrix33d m);
void m3dLoadIdentity44(M3DMatrix44f m);
void m3dLoadIdentity44(M3DMatrix44d m); /////////////////////////////////////////////////////////////////////////////
// Get/Set Column.
inline void m3dGetMatrixColumn33(M3DVector3f dst, const M3DMatrix33f src, int column)
{ memcpy(dst, src + (3 * column), sizeof(float) * 3); } inline void m3dGetMatrixColumn33(M3DVector3d dst, const M3DMatrix33d src, int column)
{ memcpy(dst, src + (3 * column), sizeof(double) * 3); } inline void m3dSetMatrixColumn33(M3DMatrix33f dst, const M3DVector3f src, int column)
{ memcpy(dst + (3 * column), src, sizeof(float) * 3); } inline void m3dSetMatrixColumn33(M3DMatrix33d dst, const M3DVector3d src, int column)
{ memcpy(dst + (3 * column), src, sizeof(double) * 3); } inline void m3dGetMatrixColumn44(M3DVector4f dst, const M3DMatrix44f src, int column)
{ memcpy(dst, src + (4 * column), sizeof(float) * 4); } inline void m3dGetMatrixColumn44(M3DVector4d dst, const M3DMatrix44d src, int column)
{ memcpy(dst, src + (4 * column), sizeof(double) * 4); } inline void m3dSetMatrixColumn44(M3DMatrix44f dst, const M3DVector4f src, int column)
{ memcpy(dst + (4 * column), src, sizeof(float) * 4); } inline void m3dSetMatrixColumn44(M3DMatrix44d dst, const M3DVector4d src, int column)
{ memcpy(dst + (4 * column), src, sizeof(double) * 4); } // Get/Set row purposely omitted... use the functions below.
// I don't think row vectors are useful for column major ordering...
// If I'm wrong, add them later. //////////////////////////////////////////////////////////////////////////////
// Get/Set RowCol - Remember column major ordering...
// Provides for element addressing
inline void m3dSetMatrixRowCol33(M3DMatrix33f m, int row, int col, float value)
{ m[(col * 3) + row] = value; } inline float m3dGetMatrixRowCol33(const M3DMatrix33f m, int row, int col)
{ return m[(col * 3) + row]; } inline void m3dSetMatrixRowCol33(M3DMatrix33d m, int row, int col, double value)
{ m[(col * 3) + row] = value; } inline double m3dGetMatrixRowCol33(const M3DMatrix33d m, int row, int col)
{ return m[(col * 3) + row]; } inline void m3dSetMatrixRowCol44(M3DMatrix44f m, int row, int col, float value)
{ m[(col * 4) + row] = value; } inline float m3dGetMatrixRowCol44(const M3DMatrix44f m, int row, int col)
{ return m[(col * 4) + row]; } inline void m3dSetMatrixRowCol44(M3DMatrix44d m, int row, int col, double value)
{ m[(col * 4) + row] = value; } inline double m3dGetMatrixRowCol44(const M3DMatrix44d m, int row, int col)
{ return m[(col * 4) + row]; } ///////////////////////////////////////////////////////////////////////////////
// Extract a rotation matrix from a 4x4 matrix
// Extracts the rotation matrix (3x3) from a 4x4 matrix
inline void m3dExtractRotation(M3DMatrix33f dst, const M3DMatrix44f src)
{
memcpy(dst, src, sizeof(float) * 3); // X column
memcpy(dst + 3, src + 4, sizeof(float) * 3); // Y column
memcpy(dst + 6, src + 8, sizeof(float) * 3); // Z column
} // Ditto above, but for doubles
inline void m3dExtractRotation(M3DMatrix33d dst, const M3DMatrix44d src)
{
memcpy(dst, src, sizeof(double) * 3); // X column
memcpy(dst + 3, src + 4, sizeof(double) * 3); // Y column
memcpy(dst + 6, src + 8, sizeof(double) * 3); // Z column
} // Inject Rotation (3x3) into a full 4x4 matrix...
inline void m3dInjectRotation(M3DMatrix44f dst, const M3DMatrix33f src)
{
memcpy(dst, src, sizeof(float) * 4);
memcpy(dst + 4, src + 4, sizeof(float) * 4);
memcpy(dst + 8, src + 8, sizeof(float) * 4);
} // Ditto above for doubles
inline void m3dInjectRotation(M3DMatrix44d dst, const M3DMatrix33d src)
{
memcpy(dst, src, sizeof(double) * 4);
memcpy(dst + 4, src + 4, sizeof(double) * 4);
memcpy(dst + 8, src + 8, sizeof(double) * 4);
} ////////////////////////////////////////////////////////////////////////////////
// MultMatrix
// Implemented in Math.cpp
void m3dMatrixMultiply44(M3DMatrix44f product, const M3DMatrix44f a, const M3DMatrix44f b);
void m3dMatrixMultiply44(M3DMatrix44d product, const M3DMatrix44d a, const M3DMatrix44d b);
void m3dMatrixMultiply33(M3DMatrix33f product, const M3DMatrix33f a, const M3DMatrix33f b);
void m3dMatrixMultiply33(M3DMatrix33d product, const M3DMatrix33d a, const M3DMatrix33d b); // Transform - Does rotation and translation via a 4x4 matrix. Transforms
// a point or vector.
// By-the-way __inline means I'm asking the compiler to do a cost/benefit analysis. If
// these are used frequently, they may not be inlined to save memory. I'm experimenting
// with this....
__inline void m3dTransformVector3(M3DVector3f vOut, const M3DVector3f v, const M3DMatrix44f m)
{
vOut[0] = m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12];// * v[3];
vOut[1] = m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13];// * v[3];
vOut[2] = m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14];// * v[3];
//vOut[3] = m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3];
} // Ditto above, but for doubles
__inline void m3dTransformVector3(M3DVector3d vOut, const M3DVector3d v, const M3DMatrix44d m)
{
vOut[0] = m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12];// * v[3];
vOut[1] = m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13];// * v[3];
vOut[2] = m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14];// * v[3];
//vOut[3] = m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3];
} __inline void m3dTransformVector4(M3DVector4f vOut, const M3DVector4f v, const M3DMatrix44f m)
{
vOut[0] = m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12] * v[3];
vOut[1] = m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13] * v[3];
vOut[2] = m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14] * v[3];
vOut[3] = m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3];
} // Ditto above, but for doubles
__inline void m3dTransformVector4(M3DVector4d vOut, const M3DVector4d v, const M3DMatrix44d m)
{
vOut[0] = m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12] * v[3];
vOut[1] = m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13] * v[3];
vOut[2] = m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14] * v[3];
vOut[3] = m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3];
} // Just do the rotation, not the translation... this is usually done with a 3x3
// Matrix.
__inline void m3dRotateVector(M3DVector3f vOut, const M3DVector3f p, const M3DMatrix33f m)
{
vOut[0] = m[0] * p[0] + m[3] * p[1] + m[6] * p[2];
vOut[1] = m[1] * p[0] + m[4] * p[1] + m[7] * p[2];
vOut[2] = m[2] * p[0] + m[5] * p[1] + m[8] * p[2];
} // Ditto above, but for doubles
__inline void m3dRotateVector(M3DVector3d vOut, const M3DVector3d p, const M3DMatrix33d m)
{
vOut[0] = m[0] * p[0] + m[3] * p[1] + m[6] * p[2];
vOut[1] = m[1] * p[0] + m[4] * p[1] + m[7] * p[2];
vOut[2] = m[2] * p[0] + m[5] * p[1] + m[8] * p[2];
} // Scale a matrix (I don't beleive in Scaling matricies ;-)
// Yes, it's faster to loop backwards... These could be
// unrolled... but eh... if you find this is a bottleneck,
// then you should unroll it yourself
inline void m3dScaleMatrix33(M3DMatrix33f m, float scale)
{ for(int i = 8; i >=0; i--) m[i] *= scale; } inline void m3dScaleMatrix33(M3DMatrix33d m, double scale)
{ for(int i = 8; i >=0; i--) m[i] *= scale; } inline void m3dScaleMatrix44(M3DMatrix44f m, float scale)
{ for(int i = 15; i >=0; i--) m[i] *= scale; } inline void m3dScaleMatrix44(M3DMatrix44d m, double scale)
{ for(int i = 15; i >=0; i--) m[i] *= scale; } // Create a Rotation matrix
// Implemented in math.cpp
void m3dRotationMatrix33(M3DMatrix33f m, float angle, float x, float y, float z);
void m3dRotationMatrix33(M3DMatrix33d m, double angle, double x, double y, double z);
void m3dRotationMatrix44(M3DMatrix44f m, float angle, float x, float y, float z);
void m3dRotationMatrix44(M3DMatrix44d m, double angle, double x, double y, double z); // Create a Translation matrix. Only 4x4 matrices have translation components
inline void m3dTranslationMatrix44(M3DMatrix44f m, float x, float y, float z)
{ m3dLoadIdentity44(m); m[12] = x; m[13] = y; m[14] = z; } inline void m3dTranslationMatrix44(M3DMatrix44d m, double x, double y, double z)
{ m3dLoadIdentity44(m); m[12] = x; m[13] = y; m[14] = z; } // Translate matrix. Only 4x4 matrices supported
inline void m3dTranslateMatrix44(M3DMatrix44f m, float x, float y, float z)
{ m[12] += x; m[13] += y; m[14] += z; } inline void m3dTranslateMatrix44(M3DMatrix44d m, double x, double y, double z)
{ m[12] += x; m[13] += y; m[14] += z; } // Scale matrix. Only 4x4 matrices supported
inline void m3dScaleMatrix44(M3DMatrix44f m, float x, float y, float z)
{ m[0] *= x; m[5] *= y; m[10] *= z; } inline void m3dScaleMatrix44(M3DMatrix44d m, double x, double y, double z)
{ m[0] *= x; m[5] *= y; m[10] *= z; } // Transpose/Invert - Only 4x4 matricies supported
#define TRANSPOSE44(dst, src) \
{ \
for (int j = 0; j < 4; j++) \
{ \
for (int i = 0; i < 4; i++) \
{ \
dst[(j*4)+i] = src[(i*4)+j]; \
} \
} \
}
inline void m3dTransposeMatrix44(M3DMatrix44f dst, const M3DMatrix44f src)
{ TRANSPOSE44(dst, src); }
inline void m3dTransposeMatrix44(M3DMatrix44d dst, const M3DMatrix44d src)
{ TRANSPOSE44(dst, src); }
bool m3dInvertMatrix44(M3DMatrix44f dst, const M3DMatrix44f src);
bool m3dInvertMatrix44(M3DMatrix44d dst, const M3DMatrix44d src); ///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Other Miscellaneous functions // Find a normal from three points
// Implemented in math3d.cpp
void m3dFindNormal(M3DVector3f result, const M3DVector3f point1, const M3DVector3f point2,
const M3DVector3f point3);
void m3dFindNormal(M3DVector3d result, const M3DVector3d point1, const M3DVector3d point2,
const M3DVector3d point3); // Calculates the signed distance of a point to a plane
inline float m3dGetDistanceToPlane(const M3DVector3f point, const M3DVector4f plane)
{ return point[0]*plane[0] + point[1]*plane[1] + point[2]*plane[2] + plane[3]; } inline double m3dGetDistanceToPlane(const M3DVector3d point, const M3DVector4d plane)
{ return point[0]*plane[0] + point[1]*plane[1] + point[2]*plane[2] + plane[3]; } // Get plane equation from three points and a normal
void m3dGetPlaneEquation(M3DVector4f planeEq, const M3DVector3f p1, const M3DVector3f p2, const M3DVector3f p3);
void m3dGetPlaneEquation(M3DVector4d planeEq, const M3DVector3d p1, const M3DVector3d p2, const M3DVector3d p3); // Determine if a ray intersects a sphere
double m3dRaySphereTest(const M3DVector3d point, const M3DVector3d ray, const M3DVector3d sphereCenter, double sphereRadius);
float m3dRaySphereTest(const M3DVector3f point, const M3DVector3f ray, const M3DVector3f sphereCenter, float sphereRadius); // Etc. etc. ///////////////////////////////////////////////////////////////////////////////////////////////////////
// Faster (and more robust) replacements for gluProject
void m3dProjectXY( M3DVector2f vPointOut, const M3DMatrix44f mModelView, const M3DMatrix44f mProjection, const int iViewPort[4], const M3DVector3f vPointIn);
void m3dProjectXYZ(M3DVector3f vPointOut, const M3DMatrix44f mModelView, const M3DMatrix44f mProjection, const int iViewPort[4], const M3DVector3f vPointIn); //////////////////////////////////////////////////////////////////////////////////////////////////
// This function does a three dimensional Catmull-Rom "spline" interpolation between p1 and p2
void m3dCatmullRom(M3DVector3f vOut, M3DVector3f vP0, M3DVector3f vP1, M3DVector3f vP2, M3DVector3f vP3, float t);
void m3dCatmullRom(M3DVector3d vOut, M3DVector3d vP0, M3DVector3d vP1, M3DVector3d vP2, M3DVector3d vP3, double t); //////////////////////////////////////////////////////////////////////////////////////////////////
// Compare floats and doubles...
inline bool m3dCloseEnough(float fCandidate, float fCompare, float fEpsilon)
{
return (fabs(fCandidate - fCompare) < fEpsilon);
} inline bool m3dCloseEnough(double dCandidate, double dCompare, double dEpsilon)
{
return (fabs(dCandidate - dCompare) < dEpsilon);
} ////////////////////////////////////////////////////////////////////////////
// Used for normal mapping. Finds the tangent bases for a triangle...
// Only a floating point implementation is provided.
void m3dCalculateTangentBasis(const M3DVector3f pvTriangle[3], const M3DVector2f pvTexCoords[3], const M3DVector3f N, M3DVector3f vTangent); ////////////////////////////////////////////////////////////////////////////
// Smoothly step between 0 and 1 between edge1 and edge 2
double m3dSmoothStep(double edge1, double edge2, double x);
float m3dSmoothStep(float edge1, float edge2, float x); /////////////////////////////////////////////////////////////////////////////
// Planar shadow Matrix
void m3dMakePlanarShadowMatrix(M3DMatrix44d proj, const M3DVector4d planeEq, const M3DVector3d vLightPos);
void m3dMakePlanarShadowMatrix(M3DMatrix44f proj, const M3DVector4f planeEq, const M3DVector3f vLightPos); double m3dClosestPointOnRay(M3DVector3d vPointOnRay, const M3DVector3d vRayOrigin, const M3DVector3d vUnitRayDir,
const M3DVector3d vPointInSpace); float m3dClosestPointOnRay(M3DVector3f vPointOnRay, const M3DVector3f vRayOrigin, const M3DVector3f vUnitRayDir,
const M3DVector3f vPointInSpace); #endif
Math3d.cpp
// Math3d.c
// Implementation of non-inlined functions in the Math3D Library
// Richard S. Wright Jr. // These are pretty portable
#include "stdafx.h"
#include <math.h>
#include "math3d.h" ////////////////////////////////////////////////////////////
// LoadIdentity
// For 3x3 and 4x4 float and double matricies.
// 3x3 float
void m3dLoadIdentity33(M3DMatrix33f m)
{
// Don't be fooled, this is still column major
static M3DMatrix33f identity = { 1.0f, 0.0f, 0.0f ,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f }; memcpy(m, identity, sizeof(M3DMatrix33f));
} // 3x3 double
void m3dLoadIdentity33(M3DMatrix33d m)
{
// Don't be fooled, this is still column major
static M3DMatrix33d identity = { 1.0, 0.0, 0.0 ,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0 }; memcpy(m, identity, sizeof(M3DMatrix33d));
} // 4x4 float
void m3dLoadIdentity44(M3DMatrix44f m)
{
// Don't be fooled, this is still column major
static M3DMatrix44f identity = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f }; memcpy(m, identity, sizeof(M3DMatrix44f));
} // 4x4 double
void m3dLoadIdentity44(M3DMatrix44d m)
{
static M3DMatrix44d identity = { 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 }; memcpy(m, identity, sizeof(M3DMatrix44d));
} ////////////////////////////////////////////////////////////////////////
// Return the square of the distance between two points
// Should these be inlined...?
float m3dGetDistanceSquared(const M3DVector3f u, const M3DVector3f v)
{
float x = u[0] - v[0];
x = x*x; float y = u[1] - v[1];
y = y*y; float z = u[2] - v[2];
z = z*z; return (x + y + z);
} // Ditto above, but for doubles
double m3dGetDistanceSquared(const M3DVector3d u, const M3DVector3d v)
{
double x = u[0] - v[0];
x = x*x; double y = u[1] - v[1];
y = y*y; double z = u[2] - v[2];
z = z*z; return (x + y + z);
} #define A(row,col) a[(col<<2)+row]
#define B(row,col) b[(col<<2)+row]
#define P(row,col) product[(col<<2)+row] ///////////////////////////////////////////////////////////////////////////////
// Multiply two 4x4 matricies
void m3dMatrixMultiply44(M3DMatrix44f product, const M3DMatrix44f a, const M3DMatrix44f b )
{
for (int i = 0; i < 4; i++) {
float ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
}
} // Ditto above, but for doubles
void m3dMatrixMultiply(M3DMatrix44d product, const M3DMatrix44d a, const M3DMatrix44d b )
{
for (int i = 0; i < 4; i++) {
double ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
}
}
#undef A
#undef B
#undef P #define A33(row,col) a[(col*3)+row]
#define B33(row,col) b[(col*3)+row]
#define P33(row,col) product[(col*3)+row] ///////////////////////////////////////////////////////////////////////////////
// Multiply two 3x3 matricies
void m3dMatrixMultiply33(M3DMatrix33f product, const M3DMatrix33f a, const M3DMatrix33f b )
{
for (int i = 0; i < 3; i++) {
float ai0=A33(i,0), ai1=A33(i,1), ai2=A33(i,2);
P33(i,0) = ai0 * B33(0,0) + ai1 * B33(1,0) + ai2 * B33(2,0);
P33(i,1) = ai0 * B33(0,1) + ai1 * B33(1,1) + ai2 * B33(2,1);
P33(i,2) = ai0 * B33(0,2) + ai1 * B33(1,2) + ai2 * B33(2,2);
}
} // Ditto above, but for doubles
void m3dMatrixMultiply44(M3DMatrix33d product, const M3DMatrix33d a, const M3DMatrix33d b )
{
for (int i = 0; i < 3; i++) {
double ai0=A33(i,0), ai1=A33(i,1), ai2=A33(i,2);
P33(i,0) = ai0 * B33(0,0) + ai1 * B33(1,0) + ai2 * B33(2,0);
P33(i,1) = ai0 * B33(0,1) + ai1 * B33(1,1) + ai2 * B33(2,1);
P33(i,2) = ai0 * B33(0,2) + ai1 * B33(1,2) + ai2 * B33(2,2);
}
} #undef A33
#undef B33
#undef P33 #define M33(row,col) m[col*3+row] ///////////////////////////////////////////////////////////////////////////////
// Creates a 3x3 rotation matrix, takes radians NOT degrees
void m3dRotationMatrix33(M3DMatrix33f m, float angle, float x, float y, float z)
{ float mag, s, c;
float xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = float(sin(angle));
c = float(cos(angle)); mag = float(sqrt( x*x + y*y + z*z )); // Identity matrix
if (mag == 0.0f) {
m3dLoadIdentity33(m);
return;
} // Rotation matrix is normalized
x /= mag;
y /= mag;
z /= mag; xx = x * x;
yy = y * y;
zz = z * z;
xy = x * y;
yz = y * z;
zx = z * x;
xs = x * s;
ys = y * s;
zs = z * s;
one_c = 1.0f - c; M33(0,0) = (one_c * xx) + c;
M33(0,1) = (one_c * xy) - zs;
M33(0,2) = (one_c * zx) + ys; M33(1,0) = (one_c * xy) + zs;
M33(1,1) = (one_c * yy) + c;
M33(1,2) = (one_c * yz) - xs; M33(2,0) = (one_c * zx) - ys;
M33(2,1) = (one_c * yz) + xs;
M33(2,2) = (one_c * zz) + c;
} #undef M33 ///////////////////////////////////////////////////////////////////////////////
// Creates a 4x4 rotation matrix, takes radians NOT degrees
void m3dRotationMatrix44(M3DMatrix44f m, float angle, float x, float y, float z)
{
float mag, s, c;
float xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = float(sin(angle));
c = float(cos(angle)); mag = float(sqrt( x*x + y*y + z*z )); // Identity matrix
if (mag == 0.0f) {
m3dLoadIdentity44(m);
return;
} // Rotation matrix is normalized
x /= mag;
y /= mag;
z /= mag; #define M(row,col) m[col*4+row] xx = x * x;
yy = y * y;
zz = z * z;
xy = x * y;
yz = y * z;
zx = z * x;
xs = x * s;
ys = y * s;
zs = z * s;
one_c = 1.0f - c; M(0,0) = (one_c * xx) + c;
M(0,1) = (one_c * xy) - zs;
M(0,2) = (one_c * zx) + ys;
M(0,3) = 0.0f; M(1,0) = (one_c * xy) + zs;
M(1,1) = (one_c * yy) + c;
M(1,2) = (one_c * yz) - xs;
M(1,3) = 0.0f; M(2,0) = (one_c * zx) - ys;
M(2,1) = (one_c * yz) + xs;
M(2,2) = (one_c * zz) + c;
M(2,3) = 0.0f; M(3,0) = 0.0f;
M(3,1) = 0.0f;
M(3,2) = 0.0f;
M(3,3) = 1.0f; #undef M
} ///////////////////////////////////////////////////////////////////////////////
// Ditto above, but for doubles
void m3dRotationMatrix33(M3DMatrix33d m, double angle, double x, double y, double z)
{
double mag, s, c;
double xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = sin(angle);
c = cos(angle); mag = sqrt( x*x + y*y + z*z ); // Identity matrix
if (mag == 0.0) {
m3dLoadIdentity33(m);
return;
} // Rotation matrix is normalized
x /= mag;
y /= mag;
z /= mag; #define M(row,col) m[col*3+row] xx = x * x;
yy = y * y;
zz = z * z;
xy = x * y;
yz = y * z;
zx = z * x;
xs = x * s;
ys = y * s;
zs = z * s;
one_c = 1.0 - c; M(0,0) = (one_c * xx) + c;
M(0,1) = (one_c * xy) - zs;
M(0,2) = (one_c * zx) + ys; M(1,0) = (one_c * xy) + zs;
M(1,1) = (one_c * yy) + c;
M(1,2) = (one_c * yz) - xs; M(2,0) = (one_c * zx) - ys;
M(2,1) = (one_c * yz) + xs;
M(2,2) = (one_c * zz) + c; #undef M
} ///////////////////////////////////////////////////////////////////////////////
// Creates a 4x4 rotation matrix, takes radians NOT degrees
void m3dRotationMatrix44(M3DMatrix44d m, double angle, double x, double y, double z)
{
double mag, s, c;
double xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = sin(angle);
c = cos(angle); mag = sqrt( x*x + y*y + z*z ); // Identity matrix
if (mag == 0.0) {
m3dLoadIdentity44(m);
return;
} // Rotation matrix is normalized
x /= mag;
y /= mag;
z /= mag; #define M(row,col) m[col*4+row] xx = x * x;
yy = y * y;
zz = z * z;
xy = x * y;
yz = y * z;
zx = z * x;
xs = x * s;
ys = y * s;
zs = z * s;
one_c = 1.0f - c; M(0,0) = (one_c * xx) + c;
M(0,1) = (one_c * xy) - zs;
M(0,2) = (one_c * zx) + ys;
M(0,3) = 0.0; M(1,0) = (one_c * xy) + zs;
M(1,1) = (one_c * yy) + c;
M(1,2) = (one_c * yz) - xs;
M(1,3) = 0.0; M(2,0) = (one_c * zx) - ys;
M(2,1) = (one_c * yz) + xs;
M(2,2) = (one_c * zz) + c;
M(2,3) = 0.0; M(3,0) = 0.0;
M(3,1) = 0.0;
M(3,2) = 0.0;
M(3,3) = 1.0; #undef M
} // Lifted from Mesa
/*
* Compute inverse of 4x4 transformation matrix.
* Code contributed by Jacques Leroy jle@star.be
* Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
*/
bool m3dInvertMatrix44(M3DMatrix44f dst, const M3DMatrix44f src )
{
#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }
#define MAT(m,r,c) (m)[(c)*4+(r)] float wtmp[4][8];
float m0, m1, m2, m3, s;
float *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(src,0,0), r0[1] = MAT(src,0,1),
r0[2] = MAT(src,0,2), r0[3] = MAT(src,0,3),
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(src,1,0), r1[1] = MAT(src,1,1),
r1[2] = MAT(src,1,2), r1[3] = MAT(src,1,3),
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(src,2,0), r2[1] = MAT(src,2,1),
r2[2] = MAT(src,2,2), r2[3] = MAT(src,2,3),
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(src,3,0), r3[1] = MAT(src,3,1),
r3[2] = MAT(src,3,2), r3[3] = MAT(src,3,3),
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; /* choose pivot - or die */
if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
if (0.0 == r0[0]) return false; /* eliminate first variable */
m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
s = r0[4];
if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r0[5];
if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r0[6];
if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r0[7];
if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */
if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
if (0.0 == r1[1]) return false; /* eliminate second variable */
m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */
if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
if (0.0 == r2[2]) return false; /* eliminate third variable */
m3 = r3[2]/r2[2];
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
r3[7] -= m3 * r2[7]; /* last check */
if (0.0 == r3[3]) return false; s = 1.0f/r3[3]; /* now back substitute row 3 */
r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; /* now back substitute row 2 */
s = 1.0f/r2[2];
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
m1 = r1[3];
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
m0 = r0[3];
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; /* now back substitute row 1 */
s = 1.0f/r1[1];
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
m0 = r0[2];
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; /* now back substitute row 0 */
s = 1.0f/r0[0];
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); MAT(dst,0,0) = r0[4]; MAT(dst,0,1) = r0[5],
MAT(dst,0,2) = r0[6]; MAT(dst,0,3) = r0[7],
MAT(dst,1,0) = r1[4]; MAT(dst,1,1) = r1[5],
MAT(dst,1,2) = r1[6]; MAT(dst,1,3) = r1[7],
MAT(dst,2,0) = r2[4]; MAT(dst,2,1) = r2[5],
MAT(dst,2,2) = r2[6]; MAT(dst,2,3) = r2[7],
MAT(dst,3,0) = r3[4]; MAT(dst,3,1) = r3[5],
MAT(dst,3,2) = r3[6]; MAT(dst,3,3) = r3[7]; return true; #undef MAT
#undef SWAP_ROWS
} // Ditto above, but for doubles
bool m3dInvertMatrix44(M3DMatrix44d dst, const M3DMatrix44d src)
{
#define SWAP_ROWS(a, b) { double *_tmp = a; (a)=(b); (b)=_tmp; }
#define MAT(m,r,c) (m)[(c)*4+(r)] double wtmp[4][8];
double m0, m1, m2, m3, s;
double *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(src,0,0), r0[1] = MAT(src,0,1),
r0[2] = MAT(src,0,2), r0[3] = MAT(src,0,3),
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(src,1,0), r1[1] = MAT(src,1,1),
r1[2] = MAT(src,1,2), r1[3] = MAT(src,1,3),
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(src,2,0), r2[1] = MAT(src,2,1),
r2[2] = MAT(src,2,2), r2[3] = MAT(src,2,3),
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(src,3,0), r3[1] = MAT(src,3,1),
r3[2] = MAT(src,3,2), r3[3] = MAT(src,3,3),
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; // choose pivot - or die
if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
if (0.0 == r0[0]) return false; // eliminate first variable
m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
s = r0[4];
if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r0[5];
if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r0[6];
if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r0[7];
if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die
if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
if (0.0 == r1[1]) return false; // eliminate second variable
m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die
if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
if (0.0 == r2[2]) return false; // eliminate third variable
m3 = r3[2]/r2[2];
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
r3[7] -= m3 * r2[7]; // last check
if (0.0 == r3[3]) return false; s = 1.0f/r3[3]; // now back substitute row 3
r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; // now back substitute row 2
s = 1.0f/r2[2];
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
m1 = r1[3];
r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
m0 = r0[3];
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; // now back substitute row 1
s = 1.0f/r1[1];
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
m0 = r0[2];
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; // now back substitute row 0
s = 1.0f/r0[0];
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); MAT(dst,0,0) = r0[4]; MAT(dst,0,1) = r0[5],
MAT(dst,0,2) = r0[6]; MAT(dst,0,3) = r0[7],
MAT(dst,1,0) = r1[4]; MAT(dst,1,1) = r1[5],
MAT(dst,1,2) = r1[6]; MAT(dst,1,3) = r1[7],
MAT(dst,2,0) = r2[4]; MAT(dst,2,1) = r2[5],
MAT(dst,2,2) = r2[6]; MAT(dst,2,3) = r2[7],
MAT(dst,3,0) = r3[4]; MAT(dst,3,1) = r3[5],
MAT(dst,3,2) = r3[6]; MAT(dst,3,3) = r3[7]; return true; #undef MAT
#undef SWAP_ROWS return true;
} ///////////////////////////////////////////////////////////////////////////////////////
// Get Window coordinates, discard Z...
void m3dProjectXY(const M3DMatrix44f mModelView, const M3DMatrix44f mProjection, const int iViewPort[4], const M3DVector3f vPointIn, M3DVector2f vPointOut)
{
M3DVector4f vBack, vForth; memcpy(vBack, vPointIn, sizeof(float)*3);
vBack[3] = 1.0f; m3dTransformVector4(vForth, vBack, mModelView);
m3dTransformVector4(vBack, vForth, mProjection); if(!m3dCloseEnough(vBack[3], 0.0f, 0.000001f)) {
float div = 1.0f / vBack[3];
vBack[0] *= div;
vBack[1] *= div;
} vPointOut[0] = vBack[0] * 0.5f + 0.5f;
vPointOut[1] = vBack[1] * 0.5f + 0.5f; /* Map x,y to viewport */
vPointOut[0] = (vPointOut[0] * iViewPort[2]) + iViewPort[0];
vPointOut[1] = (vPointOut[1] * iViewPort[3]) + iViewPort[1];
} ///////////////////////////////////////////////////////////////////////////////////////
// Get window coordinates, we also want Z....
void m3dProjectXYZ(const M3DMatrix44f mModelView, const M3DMatrix44f mProjection, const int iViewPort[4], const M3DVector3f vPointIn, M3DVector3f vPointOut)
{
M3DVector4f vBack, vForth; memcpy(vBack, vPointIn, sizeof(float)*3);
vBack[3] = 1.0f; m3dTransformVector4(vForth, vBack, mModelView);
m3dTransformVector4(vBack, vForth, mProjection); if(!m3dCloseEnough(vBack[3], 0.0f, 0.000001f)) {
float div = 1.0f / vBack[3];
vBack[0] *= div;
vBack[1] *= div;
vBack[2] *= div;
} vPointOut[0] = vBack[0] * 0.5f + 0.5f;
vPointOut[1] = vBack[1] * 0.5f + 0.5f;
vPointOut[2] = vBack[2] * 0.5f + 0.5f; /* Map x,y to viewport */
vPointOut[0] = (vPointOut[0] * iViewPort[2]) + iViewPort[0];
vPointOut[1] = (vPointOut[1] * iViewPort[3]) + iViewPort[1];
} ///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Misc. Utilities
///////////////////////////////////////////////////////////////////////////////
// Calculates the normal of a triangle specified by the three points
// p1, p2, and p3. Each pointer points to an array of three floats. The
// triangle is assumed to be wound counter clockwise.
void m3dFindNormal(M3DVector3f result, const M3DVector3f point1, const M3DVector3f point2,
const M3DVector3f point3)
{
M3DVector3f v1,v2; // Temporary vectors // Calculate two vectors from the three points. Assumes counter clockwise
// winding!
v1[0] = point1[0] - point2[0];
v1[1] = point1[1] - point2[1];
v1[2] = point1[2] - point2[2]; v2[0] = point2[0] - point3[0];
v2[1] = point2[1] - point3[1];
v2[2] = point2[2] - point3[2]; // Take the cross product of the two vectors to get
// the normal vector.
m3dCrossProduct(result, v1, v2);
} // Ditto above, but for doubles
void m3dFindNormal(M3DVector3d result, const M3DVector3d point1, const M3DVector3d point2,
const M3DVector3d point3)
{
M3DVector3d v1,v2; // Temporary vectors // Calculate two vectors from the three points. Assumes counter clockwise
// winding!
v1[0] = point1[0] - point2[0];
v1[1] = point1[1] - point2[1];
v1[2] = point1[2] - point2[2]; v2[0] = point2[0] - point3[0];
v2[1] = point2[1] - point3[1];
v2[2] = point2[2] - point3[2]; // Take the cross product of the two vectors to get
// the normal vector.
m3dCrossProduct(result, v1, v2);
} /////////////////////////////////////////////////////////////////////////////////////////
// Calculate the plane equation of the plane that the three specified points lay in. The
// points are given in clockwise winding order, with normal pointing out of clockwise face
// planeEq contains the A,B,C, and D of the plane equation coefficients
void m3dGetPlaneEquation(M3DVector4f planeEq, const M3DVector3f p1, const M3DVector3f p2, const M3DVector3f p3)
{
// Get two vectors... do the cross product
M3DVector3f v1, v2; // V1 = p3 - p1
v1[0] = p3[0] - p1[0];
v1[1] = p3[1] - p1[1];
v1[2] = p3[2] - p1[2]; // V2 = P2 - p1
v2[0] = p2[0] - p1[0];
v2[1] = p2[1] - p1[1];
v2[2] = p2[2] - p1[2]; // Unit normal to plane - Not sure which is the best way here
m3dCrossProduct(planeEq, v1, v2);
m3dNormalizeVector(planeEq);
// Back substitute to get D
planeEq[3] = -(planeEq[0] * p3[0] + planeEq[1] * p3[1] + planeEq[2] * p3[2]);
} // Ditto above, but for doubles
void m3dGetPlaneEquation(M3DVector4d planeEq, const M3DVector3d p1, const M3DVector3d p2, const M3DVector3d p3)
{
// Get two vectors... do the cross product
M3DVector3d v1, v2; // V1 = p3 - p1
v1[0] = p3[0] - p1[0];
v1[1] = p3[1] - p1[1];
v1[2] = p3[2] - p1[2]; // V2 = P2 - p1
v2[0] = p2[0] - p1[0];
v2[1] = p2[1] - p1[1];
v2[2] = p2[2] - p1[2]; // Unit normal to plane - Not sure which is the best way here
m3dCrossProduct(planeEq, v1, v2);
m3dNormalizeVector(planeEq);
// Back substitute to get D
planeEq[3] = -(planeEq[0] * p3[0] + planeEq[1] * p3[1] + planeEq[2] * p3[2]);
} //////////////////////////////////////////////////////////////////////////////////////////////////
// This function does a three dimensional Catmull-Rom curve interpolation. Pass four points, and a
// floating point number between 0.0 and 1.0. The curve is interpolated between the middle two points.
// Coded by RSW
// http://www.mvps.org/directx/articles/catmull/
void m3dCatmullRom3(M3DVector3f vOut, M3DVector3f vP0, M3DVector3f vP1, M3DVector3f vP2, M3DVector3f vP3, float t)
{
// Unrolled loop to speed things up a little bit...
float t2 = t * t;
float t3 = t2 * t; // X
vOut[0] = 0.5f * ( ( 2.0f * vP1[0]) +
(-vP0[0] + vP2[0]) * t +
(2.0f * vP0[0] - 5.0f *vP1[0] + 4.0f * vP2[0] - vP3[0]) * t2 +
(-vP0[0] + 3.0f*vP1[0] - 3.0f *vP2[0] + vP3[0]) * t3);
// Y
vOut[1] = 0.5f * ( ( 2.0f * vP1[1]) +
(-vP0[1] + vP2[1]) * t +
(2.0f * vP0[1] - 5.0f *vP1[1] + 4.0f * vP2[1] - vP3[1]) * t2 +
(-vP0[1] + 3.0f*vP1[1] - 3.0f *vP2[1] + vP3[1]) * t3); // Z
vOut[2] = 0.5f * ( ( 2.0f * vP1[2]) +
(-vP0[2] + vP2[2]) * t +
(2.0f * vP0[2] - 5.0f *vP1[2] + 4.0f * vP2[2] - vP3[2]) * t2 +
(-vP0[2] + 3.0f*vP1[2] - 3.0f *vP2[2] + vP3[2]) * t3);
} //////////////////////////////////////////////////////////////////////////////////////////////////
// This function does a three dimensional Catmull-Rom curve interpolation. Pass four points, and a
// floating point number between 0.0 and 1.0. The curve is interpolated between the middle two points.
// Coded by RSW
// http://www.mvps.org/directx/articles/catmull/
void m3dCatmullRom3(M3DVector3d vOut, M3DVector3d vP0, M3DVector3d vP1, M3DVector3d vP2, M3DVector3d vP3, double t)
{
// Unrolled loop to speed things up a little bit...
double t2 = t * t;
double t3 = t2 * t; // X
vOut[0] = 0.5 * ( ( 2.0 * vP1[0]) +
(-vP0[0] + vP2[0]) * t +
(2.0 * vP0[0] - 5.0 *vP1[0] + 4.0 * vP2[0] - vP3[0]) * t2 +
(-vP0[0] + 3.0*vP1[0] - 3.0 *vP2[0] + vP3[0]) * t3);
// Y
vOut[1] = 0.5 * ( ( 2.0 * vP1[1]) +
(-vP0[1] + vP2[1]) * t +
(2.0 * vP0[1] - 5.0 *vP1[1] + 4.0 * vP2[1] - vP3[1]) * t2 +
(-vP0[1] + 3*vP1[1] - 3.0 *vP2[1] + vP3[1]) * t3); // Z
vOut[2] = 0.5 * ( ( 2.0 * vP1[2]) +
(-vP0[2] + vP2[2]) * t +
(2.0 * vP0[2] - 5.0 *vP1[2] + 4.0 * vP2[2] - vP3[2]) * t2 +
(-vP0[2] + 3.0*vP1[2] - 3.0 *vP2[2] + vP3[2]) * t3);
} ///////////////////////////////////////////////////////////////////////////////
// Determine if the ray (starting at point) intersects the sphere centered at
// sphereCenter with radius sphereRadius
// Return value is < 0 if the ray does not intersect
// Return value is 0.0 if ray is tangent
// Positive value is distance to the intersection point
// Algorithm from "3D Math Primer for Graphics and Game Development"
double m3dRaySphereTest(const M3DVector3d point, const M3DVector3d ray, const M3DVector3d sphereCenter, double sphereRadius)
{
//m3dNormalizeVector(ray); // Make sure ray is unit length M3DVector3d rayToCenter; // Ray to center of sphere
rayToCenter[0] = sphereCenter[0] - point[0];
rayToCenter[1] = sphereCenter[1] - point[1];
rayToCenter[2] = sphereCenter[2] - point[2]; // Project rayToCenter on ray to test
double a = m3dDotProduct(rayToCenter, ray); // Distance to center of sphere
double distance2 = m3dDotProduct(rayToCenter, rayToCenter); // Or length double dRet = (sphereRadius * sphereRadius) - distance2 + (a*a); if(dRet > 0.0) // Return distance to intersection
dRet = a - sqrt(dRet); return dRet;
} ///////////////////////////////////////////////////////////////////////////////
// Determine if the ray (starting at point) intersects the sphere centered at
// ditto above, but uses floating point math
float m3dRaySphereTest(const M3DVector3f point, const M3DVector3f ray, const M3DVector3f sphereCenter, float sphereRadius)
{
//m3dNormalizeVectorf(ray); // Make sure ray is unit length M3DVector3f rayToCenter; // Ray to center of sphere
rayToCenter[0] = sphereCenter[0] - point[0];
rayToCenter[1] = sphereCenter[1] - point[1];
rayToCenter[2] = sphereCenter[2] - point[2]; // Project rayToCenter on ray to test
float a = m3dDotProduct(rayToCenter, ray); // Distance to center of sphere
float distance2 = m3dDotProduct(rayToCenter, rayToCenter); // Or length float dRet = (sphereRadius * sphereRadius) - distance2 + (a*a); if(dRet > 0.0) // Return distance to intersection
dRet = a - sqrtf(dRet); return dRet;
} ///////////////////////////////////////////////////////////////////////////////////////////////////
// Calculate the tangent basis for a triangle on the surface of a model
// This vector is needed for most normal mapping shaders
void m3dCalculateTangentBasis(const M3DVector3f vTriangle[3], const M3DVector2f vTexCoords[3], const M3DVector3f N, M3DVector3f vTangent)
{
M3DVector3f dv2v1, dv3v1;
float dc2c1t, dc2c1b, dc3c1t, dc3c1b;
float M; m3dSubtractVectors3(dv2v1, vTriangle[1], vTriangle[0]);
m3dSubtractVectors3(dv3v1, vTriangle[2], vTriangle[0]); dc2c1t = vTexCoords[1][0] - vTexCoords[0][0];
dc2c1b = vTexCoords[1][1] - vTexCoords[0][1];
dc3c1t = vTexCoords[2][0] - vTexCoords[0][0];
dc3c1b = vTexCoords[2][1] - vTexCoords[0][1]; M = (dc2c1t * dc3c1b) - (dc3c1t * dc2c1b);
M = 1.0f / M; m3dScaleVector3(dv2v1, dc3c1b);
m3dScaleVector3(dv3v1, dc2c1b); m3dSubtractVectors3(vTangent, dv2v1, dv3v1);
m3dScaleVector3(vTangent, M); // This potentially changes the direction of the vector
m3dNormalizeVector(vTangent); M3DVector3f B;
m3dCrossProduct(B, N, vTangent);
m3dCrossProduct(vTangent, B, N);
m3dNormalizeVector(vTangent);
} ////////////////////////////////////////////////////////////////////////////
// Smoothly step between 0 and 1 between edge1 and edge 2
double m3dSmoothStep(double edge1, double edge2, double x)
{
double t;
t = (x - edge1) / (edge2 - edge1);
if(t > 1.0)
t = 1.0; if(t < 0.0)
t = 0.0f; return t * t * ( 3.0 - 2.0 * t);
} ////////////////////////////////////////////////////////////////////////////
// Smoothly step between 0 and 1 between edge1 and edge 2
float m3dSmoothStep(float edge1, float edge2, float x)
{
float t;
t = (x - edge1) / (edge2 - edge1);
if(t > 1.0f)
t = 1.0f; if(t < 0.0)
t = 0.0f; return t * t * ( 3.0f - 2.0f * t);
} ///////////////////////////////////////////////////////////////////////////
// Creae a projection to "squish" an object into the plane.
// Use m3dGetPlaneEquationf(planeEq, point1, point2, point3);
// to get a plane equation.
void m3dMakePlanarShadowMatrix(M3DMatrix44f proj, const M3DVector4f planeEq, const M3DVector3f vLightPos)
{
// These just make the code below easier to read. They will be
// removed by the optimizer.
float a = planeEq[0];
float b = planeEq[1];
float c = planeEq[2];
float d = planeEq[3]; float dx = -vLightPos[0];
float dy = -vLightPos[1];
float dz = -vLightPos[2]; // Now build the projection matrix
proj[0] = b * dy + c * dz;
proj[1] = -a * dy;
proj[2] = -a * dz;
proj[3] = 0.0; proj[4] = -b * dx;
proj[5] = a * dx + c * dz;
proj[6] = -b * dz;
proj[7] = 0.0; proj[8] = -c * dx;
proj[9] = -c * dy;
proj[10] = a * dx + b * dy;
proj[11] = 0.0; proj[12] = -d * dx;
proj[13] = -d * dy;
proj[14] = -d * dz;
proj[15] = a * dx + b * dy + c * dz;
// Shadow matrix ready
} ///////////////////////////////////////////////////////////////////////////
// Creae a projection to "squish" an object into the plane.
// Use m3dGetPlaneEquationd(planeEq, point1, point2, point3);
// to get a plane equation.
void m3dMakePlanarShadowMatrix(M3DMatrix44d proj, const M3DVector4d planeEq, const M3DVector3f vLightPos)
{
// These just make the code below easier to read. They will be
// removed by the optimizer.
double a = planeEq[0];
double b = planeEq[1];
double c = planeEq[2];
double d = planeEq[3]; double dx = -vLightPos[0];
double dy = -vLightPos[1];
double dz = -vLightPos[2]; // Now build the projection matrix
proj[0] = b * dy + c * dz;
proj[1] = -a * dy;
proj[2] = -a * dz;
proj[3] = 0.0; proj[4] = -b * dx;
proj[5] = a * dx + c * dz;
proj[6] = -b * dz;
proj[7] = 0.0; proj[8] = -c * dx;
proj[9] = -c * dy;
proj[10] = a * dx + b * dy;
proj[11] = 0.0; proj[12] = -d * dx;
proj[13] = -d * dy;
proj[14] = -d * dz;
proj[15] = a * dx + b * dy + c * dz;
// Shadow matrix ready
} /////////////////////////////////////////////////////////////////////////////
// I want to know the point on a ray, closest to another given point in space.
// As a bonus, return the distance squared of the two points.
// In: vRayOrigin is the origin of the ray.
// In: vUnitRayDir is the unit vector of the ray
// In: vPointInSpace is the point in space
// Out: vPointOnRay is the poing on the ray closest to vPointInSpace
// Return: The square of the distance to the ray
double m3dClosestPointOnRay(M3DVector3d vPointOnRay, const M3DVector3d vRayOrigin, const M3DVector3d vUnitRayDir,
const M3DVector3d vPointInSpace)
{
M3DVector3d v;
m3dSubtractVectors3(v, vPointInSpace, vRayOrigin); double t = m3dDotProduct(vUnitRayDir, v); // This is the point on the ray
vPointOnRay[0] = vRayOrigin[0] + (t * vUnitRayDir[0]);
vPointOnRay[1] = vRayOrigin[1] + (t * vUnitRayDir[1]);
vPointOnRay[2] = vRayOrigin[2] + (t * vUnitRayDir[2]); return m3dGetDistanceSquared(vPointOnRay, vPointInSpace);
} // ditto above... but with floats
float m3dClosestPointOnRay(M3DVector3f vPointOnRay, const M3DVector3f vRayOrigin, const M3DVector3f vUnitRayDir,
const M3DVector3f vPointInSpace)
{
M3DVector3f v;
m3dSubtractVectors3(v, vPointInSpace, vRayOrigin); float t = m3dDotProduct(vUnitRayDir, v); // This is the point on the ray
vPointOnRay[0] = vRayOrigin[0] + (t * vUnitRayDir[0]);
vPointOnRay[1] = vRayOrigin[1] + (t * vUnitRayDir[1]);
vPointOnRay[2] = vRayOrigin[2] + (t * vUnitRayDir[2]); return m3dGetDistanceSquared(vPointOnRay, vPointInSpace);
}
VS2012下基于Glut 矩阵变换示例程序:的更多相关文章
- VS2012下基于Glut 矩阵变换示例程序2:
在VS2012下基于Glut 矩阵变换示例程序:中我们在绘制甜圈或者圆柱时使用矩阵对相应的坐标进行变换后自己绘制甜圈或者圆柱.我们也可以使用glLoadMatrixf.glLoadMatrixd载入变 ...
- VS2012下基于Glut OpenGL glEdgeFlag示例程序:
glEdgeFlag (GLboolean flag)表示一个顶点是否应该被认为是多边形的一条边界边的起点.flag为GL_TRUE后面的点都被认为是边界上的点,flag为GL_FALSE则之后的点不 ...
- VS2012下基于Glut OpenGL glDepthMask示例程序:
glDepthMask (GLboolean flag)函数可以决定将他之后的数据不写入深度缓冲区.当flag为GL_TRUE时之后的数据不写入深度缓冲区,即使启用了深度缓冲区测试功能. 使用上一个D ...
- VS2012下基于Glut OpenGL glScissor示例程序:
剪裁测试用于限制绘制区域.我们可以指定一个矩形的剪裁窗口,当启用剪裁测试后,只有在这个窗口之内的像素才能被绘制,其它像素则会被丢弃.换句话说,无论怎么绘制,剪裁窗口以外的像素将不会被修改.有的朋友可能 ...
- 部署Bookinfo示例程序详细过程和步骤(基于Kubernetes集群+Istio v1.0)
部署Bookinfo示例程序详细过程和步骤(基于Kubernetes集群+Istio v1.0) 部署Bookinfo示例程序 在下载的Istio安装包的samples目录中包含了示例应用程序. ...
- 基于阿里云容器服务用docker容器运行ASP.NET 5示例程序
小试阿里云容器服务 之后,接下来有一个挡不住的小试冲动--用docker容器运行程序.首先想到的程序是 ASP.NET 5示例程序,于是参考msdn博客中的这篇博文 Running ASP.NET 5 ...
- 大数据下基于Tensorflow框架的深度学习示例教程
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较 ...
- 基于Struts2.3.x+Spring3.2.x+Hibernate4.2.x+EasyUI1.3.4+Maven架构的示例程序
基于Struts2.3.x+Spring3.2.x+Hibernate4.2.x+EasyUI1.3.4+Maven架构的示例程序 不知道为什么,保存的时候显示有一个连接为违禁内容,可能是…………. ...
- ok6410[002] ubuntu1604系统下搭配ckermit和dnw基于RAM的裸机程序调试环境
ubuntu1604系统下搭配ckermit和dnw基于RAM的裸机程序调试环境 系统: ubuntu16.04 裸板: 飞凌公司OK6410开发板 目标:搭建基于ubuntu1604系统和基于RA ...
随机推荐
- POI操作Excel详细解释,HSSF和XSSF两种方式
HSSF道路: package com.tools.poi.lesson1; import java.io.FileInputStream; import java.io.FileNotFoundEx ...
- 数据库备份还原工具EMS SQL Angel for SQL Server发布1.3版本
EMS公司,是专门从事企业数据库以及内置于多层次客户服务器结构自动化开发.其EMS SQL Angel for SQL Server工具,便是SQL Servers数据库数据备份还原工具,并且还能使用 ...
- bootstrap-paginator 分页插件笔记
[MVC]bootstrap-paginator 分页插件笔记 bootstrap-paginator基于bootstrap框架,使用起来非常简单.官网:http://harttle.github ...
- 33、Python.Unix和Linux系统管理指南.(美)基弗特
- struts2 <s: select 标签值
JSP页面: <s:select label="家长导航" value="id" name="navson.pid" list=&q ...
- 【转】 Android项目的mvc模式
MVC (Model-View-Controller):M是指逻辑模型,V是指视图模型,C则是控制器.一个逻辑模型M可以对于多种视图模型V,比如一批统计数据你可以分别用柱状图.饼图V来表示.一种视图模 ...
- AngularJS学习笔记filter
filter是对数据进行过滤操作,比如按某个字段搜索.格式化数据等等,是一个非常有用的接口.下面就简单介绍下它的用法. AngularJS自带的filter接口,|是filter的分隔符,参数用:分隔 ...
- WCF入门教程(图文)VS2012
WCF入门教程(图文)VS2012 上一遍到现在已经有一段时间了,先向关注本文的各位“挨踢”同仁们道歉了.小生自认为一个ITer如果想要做的更好,就需要将自己的所学.所用积极分享出来,接收大家的指导和 ...
- FormsAuthentication登录ReturnUrl使用绝对路径
ASP.NET]更简单的方法:FormsAuthentication登录ReturnUrl使用绝对路径 被这个问题困扰多年,今天终于找到了更简单的解决方法,分享一下. 问题场景 假设我们在i.cn ...
- noip模拟赛:部队[技巧?思想?]
王国军总指挥——卡西乌斯准将决定重建情报局,需要从全国各地挑选有能力的士兵,选择的标准为A,B两种能力.对于每个候选士兵,如果存在另一名士兵的两项能力均大于等于他,那么他将被淘汰.(注意:若两名士兵两 ...