HDU 4945 2048

题目链接

题意:给定一个序列,求有多少个子序列能合成2048

思路:把2,4,8..2048这些数字拿出来考虑就能够了,其它数字不管怎样都不能參与组成。那么在这些数字基础上,dp[i][j]表示到第i个数字,和为j的情况数,然后对于每一个数枚举取多少个,就能够利用组合数取进行状态转移,这里有一个剪枝,就是假设加超过2048了,那么后面数字的组合数的和所有都是加到2048上面,能够利用公式一步求解,这种整体复杂度就能够满足题目了。然后这题时限卡得紧啊。10W内的逆元不先预处理出来就超时。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const int MOD = 998244353; inline void scanf_(int &num)//无负数
{
char in;
while((in=getchar()) > '9' || in<'0') ;
num=in-'0';
while(in=getchar(),in>='0'&&in<='9')
num*=10,num+=in-'0';
} int n, v[2049], mi[15], m, cnt[15];
int dp[15][2049], mi2[100005], invv[100005];
bool istwo[2049]; void init() {
int num;
m = 0;
memset(cnt, 0, sizeof(cnt));
for (int i = 0; i < n; i++) {
scanf_(num);
if (!istwo[num]) {
m++;
continue;
}
else cnt[v[num]]++;
}
} int inv(int n) {
int ans = 1;
int k = MOD - 2;
while (k) {
if (k&1) ans = (ll)ans * n % MOD;
n = (ll)n * n % MOD;
k >>= 1;
}
return ans;
} int solve() {
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 1; i <= 12; i++) {
for (int j = 0; j <= 2048; j += mi[i]) {
if (dp[i - 1][j] == 0) continue;
int C = 1, s = 0;
int sum = j;
for (int k = 0; k <= cnt[i]; k++) {
int x = sum;
if (x == 2048) {
dp[i][x] = (ll)dp[i - 1][j] * (mi2[cnt[i]] - s) % MOD + dp[i][x];
if (dp[i][x] < 0) dp[i][x] += MOD;
if (dp[i][x] >= MOD) dp[i][x] -= MOD;
break;
}
if (x % mi[i + 1])
x = x - mi[i];
dp[i][x] = (ll)dp[i - 1][j] * C % MOD + dp[i][x];
if (dp[i][x] >= MOD) dp[i][x] -= MOD;
s += C;
if (s >= MOD) s -= MOD;
C = (ll)C * (cnt[i] - k) % MOD * invv[k + 1] % MOD;
sum += mi[i];
}
}
}
return (ll)dp[12][2048] * mi2[m] % MOD;
} int main() {
memset(istwo, false, sizeof(istwo));
memset(v, -1, sizeof(v));
mi[0] = 0; v[0] = 0;
for (int i = 1, j = 1; i <= 2048; i *= 2, j++) {
istwo[i] = true;
v[i] = j;
mi[j] = i;
}
mi[13] = 4096;
for (int i = 1; i <= 2048; i++) {
if (v[i] == -1)
v[i] = v[i - 1];
}
mi2[0] = 1;
for (int i = 1; i <= 100000; i++) {
invv[i] = inv(i);
mi2[i] = mi2[i - 1] * 2 % MOD;
}
int cas = 0;
while (~scanf("%d", &n) && n) {
init();
printf("Case #%d: %d\n", ++cas, solve());
}
return 0;
}

HDU 4945 2048(DP)的更多相关文章

  1. HDU 4945 2048 DP 组合

    思路: 这个题写了一个背包的解法,超时了.搜了下题解才发现我根本不会做. 思路参见这个: 其实我们可以这样来考虑,求补集,用全集减掉不能组成2048的集合就是答案了. 因为只要达到2048就可以了,所 ...

  2. HDU 4945 2048(dp)

    题意:给n(n<=100,000)个数,0<=a[i]<=2048 .一个好的集合要满足,集合内的数可以根据2048的合并规则合并成2048 .输出好的集合的个数%998244353 ...

  3. hdu 4945 2048 (dp+组合的数目)

    2048 Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  4. HDU 4945 (dp+组合数学)

    2048 Problem Description Teacher Mai is addicted to game 2048. But finally he finds it's too hard to ...

  5. hdu 4123 树形DP+RMQ

    http://acm.hdu.edu.cn/showproblem.php? pid=4123 Problem Description Bob wants to hold a race to enco ...

  6. hdu 4507 数位dp(求和,求平方和)

    http://acm.hdu.edu.cn/showproblem.php?pid=4507 Problem Description 单身! 依旧单身! 吉哥依旧单身! DS级码农吉哥依旧单身! 所以 ...

  7. hdu 3709 数字dp(小思)

    http://acm.hdu.edu.cn/showproblem.php?pid=3709 Problem Description A balanced number is a non-negati ...

  8. hdu 4352 数位dp + 状态压缩

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. hdu 4283 区间dp

    You Are the One Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. Arrays.asList的那点事

    import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.List ...

  2. jQuery.reveal弹出层使用

    最近用到弹出层,还得自定义UI,原本用的artDialog太庞大,不合适了,于是就找到了这个东西,又小又好用,基础的弹出遮罩都有了,想要什么还不是Coder自己说了算. 这个插件是基于Jquery实现 ...

  3. MYSQL 优化指南

    数据库设计原则   标准化和规范化 数据库设计范式(3NF)   第一范式 数据属性唯一标示 在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关 ...

  4. JavaScript编写了一个计时器

    初学JavaScript,用JavaScript编写了一个计时器. 设计思想: 1.借助于Date()对象,来不断获取时间点: 2.然后用两次时间点的毫秒数相减,算出时间差: 3.累加时间差,这样就能 ...

  5. PHP课程十大 PHP图像处理功能和实现的验证码

    假如你喜欢这个博客,访问这个博客地址:http://blog.csdn.net/junzaivip 总结: gd绘图库: 数学函数 PHP图片处理函数 图片处理函数使用场景 1.验证码 2.缩放 3. ...

  6. bigdata_一篇文看懂Hadoop

    本文转载:暂未找到原出处,如需署名 请联系 我们很荣幸能够见证Hadoop十年从无到有,再到称王.感动于技术的日新月异时,希望通过这篇内容深入解读Hadoop的昨天.今天和明天,憧憬下一个十年. 本文 ...

  7. 宽客的人&amp;&amp;事件映射

    看完<宽客>这本书,叙事介绍20世纪华尔街对冲基金.股票.投资者依赖股市从直觉交易数学家的早期演化.物理学家用数学模型开发过程中的交易,这些进入金融数学家.物理学家依靠大数据分析.稍纵即逝 ...

  8. .net设计模式之装饰模式

    概述: 装饰模式是在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能.它是通过创建一个包装对象,也就是装饰来包裹真实的对象. 装饰模式的特点: (1) 装饰对象和真实对象有相同的接口.这样 ...

  9. VTune使用amplxe-cl进行Hardware Event-based Sampling Analysis 0分析

    于BASH正在使用VTune进行Hardware Event-based Sampling Analysis 0分析: 结果(部分)例如以下: 版权声明:本文博客原创文章.博客,未经同意,不得转载.

  10. cfs

    转自:http://www.cnblogs.com/openix/p/3254394.html 下文中对于红黑树或链表组织的就绪队列,统称为用队列组织的就绪队列.                    ...