原文地址:

http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html

转载请注明出处:http://www.cnblogs.com/zhxshseu/p/4947609.html

问题描述:Given a string S, find the longest palindromic substring in S.

这道题目是一个经典的动态规划DP http://challenge.greplin.com/问题,在面试中经常会被问到。为什么?因为这个问题可以有很多很多种解法。接下来将会给大家讲解5种解法,大家准备好了么?
 
你现在也可以先去 OJ 网站尝试去解决它。http://www.leetcode.com/onlinejudge
Hint:

首先,确认你能够理解 什么叫做 回文 palindrome。回文,就是一个正反向去读它,都是同一个结果的字符串。比如:“aba”是一个回文,但是“abc”不是。
一个普遍的错误:

有些朋友可能会立即想出一个快速的方法,但非常不幸,这个方法是不正确的。该方法描述如下:
把字符串S 反转,变成 S',然后找到最长的公共子串不就好了么?https://en.wikipedia.org/wiki/Longest_common_substring_problem
看起来是正确的,并没有什么不妥。但是我们看下面的例子:
 
S = “caba”, S’ = “abac”.
S和S'的最大公共子串是aba,就是正确的答案。
但是看另一个例子:
S = “abacdfgdcaba”, S’ = “abacdgfdcaba”.
这个算法将会得出S的最大回文是“abacd”,显然是不正确的。
接下来给出一个O(N2) DP 解法,同时空间复杂度也是O(N2)。
暴力搜索Brute force solution, O(N3):

暴力算法是对所有的子串,判断是否是回文。对于一个长度为N的字符串,其子串总共有C(N,2)种,而判断子串是否是回文,时间复杂度为O(N),所以总共耗费O(N3)时间.
动态规划解法, O(N2)时间复杂度 O(N2)空间复杂度:

为了将算法从暴力解法提升到DP解法,首先我们需要知道解法中得递推关系。比如字符串“ababa”,如果我们已经知道“bab”是回文,那么显然“ababa”也是回文,因为首字符和尾字符是相等的。
 
这样我们便知道了递推关系,描述如下:
定义 P[ i, j ] ← 如果子串Si … Sj 是一个回文,那么该项为true, 否则为false.
因此递推如下:
P[ i, j ] 为 true ← ( P[ i+1, j-1 ]为true,并且Si = Sj )

基本条件是:

P[ i, i ] 一定是true

P[ i, i+1 ] 为true ← ( Si = Si+1 )
这便是一个典型的DP问题解法。首先初始化长度为1,2的回文字符判断表,即P。然后以它为基础,逐个找出长度为3,4,5……的回文。(至于什么是DP问题,可以参看这篇文章http://www.360doc.com/content/13/0601/00/8076359_289597587.shtml
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
string longestPalindromeDP(string s) {
  int n = s.length();
  int longestBegin = 0;
  int maxLen = 1;
  bool table[1000][1000] = {false};
  for (int i = 0; i < n; i++) {
    table[i][i] = true;
  }
  for (int i = 0; i < n-1; i++) {
    if (s[i] == s[i+1]) {
      table[i][i+1] = true;
      longestBegin = i;
      maxLen = 2;
    }
  }
  for (int len = 3; len <= n; len++) {//对长度为3,4,5……的子串进行遍历
    for (int i = 0; i < n-len+1; i++) {//以len为窗口,在s上进行平移,判断是否符合递推条件
      int j = i+len-1;
      if (s[i] == s[j] && table[i+1][j-1]) {
        table[i][j] = true;
        longestBegin = i;
        maxLen = len;
      }
    }
  }
  return s.substr(longestBegin, maxLen);
}

举例:cabccbad

第一次循环以后,table值如下


第二次循环以后,table值如下:

下面开始长度为3,4,5……的循环:
首先当len=3:
  
     窗口里的子串为cab,i=0,j=2,这时候判断 Table[1][1] 是否 true(),并且 s[0] 和 s[2] 是否相等( 不相等)所以不满足。窗口平移:
  
     一样的判断,同理还是不满足。
……
len=3循环结束,table值不变,因为没有长度为3的回文串。
len=4:
  
     窗口子串为”cabc“,此时i=0,j=3,Table[1][2] false,不匹配。窗口平移。
    
     窗口子串为”abcc“,此时i=1,j=4,Table[2][3] false,不匹配。窗口平移。
  
     窗口子串为”bccb“,此时i=2,j=5,Table[3][4] true,且 s[2]==s[5],maxlen=4,longestBegin=2,Table更新
  
     后面都不更新。
len=5:都不更新
len=6:
     当窗口滑到
 
     串口子串为”abccba“,此时i=1,j=6,Table[2][5] true,且 s[1]==s[6],maxlen=6,longestBegin=1,Table更新
len=7:都不更新。
还有更简单的方法, O(N2) 时间复杂度 and O(1) 空间复杂度:
事实上我们可以在O(N2)时间复杂度的前提下,不使用额外的存储空间。
可以观察到,一个回文是以中心点,镜像对称的。因此,一个回文可以从中心点展开,而这个中心点,有2N-1个。
可能你会问,为什么是2N-1个中心点,而不是N个。这是因为偶数串中心点是两个数中间,奇数串中心点是中间的数字。
因为在一个中心点展开回文,需要耗时O(N),总共时间复杂度也就是O(N2).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
string expandAroundCenter(string s, int c1, int c2) {
  int l = c1, r = c2;
  int n = s.length();
  while (l >= 0 && r <= n-1 && s[l] == s[r]) {
    l--;
    r++;
  }
  return s.substr(l+1, r-l-1);
}
 
string longestPalindromeSimple(string s) {
  int n = s.length();
  if (n == 0) return "";
  string longest = s.substr(0, 1);  // c single char itself is a palindrome
  for (int i = 0; i < n-1; i++) {//遍历整个字符串
    string p1 = expandAroundCenter(s, i, i);//以该位置字符为中心展开,奇数长
    if (p1.length() > longest.length())
      longest = p1;
 
    string p2 = expandAroundCenter(s, i, i+1);//以该字符后面的空隙展开,偶数长
    if (p2.length() > longest.length())
      longest = p2;
  }
  return longest;
}

举例:cabccbad

初始时,i=0 (奇 代表奇数长子串,偶 代表偶数长子串)

  奇:
          一次循环,l=-1,r=1
          s.substr(l+1,r-l-1)==s.substr(0,1),即”c“->longest
     偶:
          不满足循环条件,l=0,r=1
          substr(1,0) null.
i=1:
     奇:
           同上
     偶:
           同上
……
i=3:
     奇:
          同上
     偶:
          可以看出这是回文的对称点。
          循环三次,第四次判断结束。
          l=0,r=7
          substr(1,6):”abccba“ -> longest
……
 
 
进一步思考:
存在 O(N)的算法么?显然有! 关于 O(N)的解法将在下一篇中解答。http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html

【翻译】Longest Palindromic Substring 最长回文子串的更多相关文章

  1. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  2. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  3. lintcode :Longest Palindromic Substring 最长回文子串

    题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...

  4. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  5. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  6. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  7. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

  8. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  9. LeetCode5. Longest Palindromic Substring 最长回文子串 4种方法

    题目链接:https://leetcode.com/problems/longest-palindromic-substring/ 题意很简单,就是求一个字符串得最长子串,这里的子串指连续的. 本文给 ...

随机推荐

  1. openstack私有云布署实践【13.2 网络Neutron-compute节点配置(办公网环境)】

    所有compute节点 下载安装组件   # yum install openstack-neutron openstack-neutron-linuxbridge ebtables ipset -y ...

  2. hdu1013

    #include<stdio.h> #include<string.h> int main() { char num[1000]; int len,sum,i; while(s ...

  3. LINQ里的“equals”和“==”的区别

    对于值类型,如果对象的值相等,则相等运算符 (==) 返回 true,否则返回 false.对于string 以外的引用类型,如果两个对象引用同一个对象,则 == 返回 true.对于 string ...

  4. Linux入门(四)linux运行环境mysql详细操作及安装phpmyadmin

    1.1 安装mysql(中间需要设定数据库的密码) sudo apt-get install mysql-serversudo apt-get install php5-mysql   #安装php5 ...

  5. dplyr 数据操作 统计描述(summarise)

    在R中,summary()是一个基础包中的重要统计描述函数,同样的在dplyr中summarise()函数也可以对数据进行统计描述. 不同的是summarise()更加的灵活多变,下面来看下summa ...

  6. hdu_5878_I Count Two Three(预处理)

    题目链接:hdu_5878_I Count Two Three 题意: 给你一个n,让你找满足那个式子的不比n小的最小数 题解: 先上个预处理,然后二分查找就行 #include<bits/st ...

  7. hdu_3247_Resource Archiver(AC自动机+bfs+TSP)

    题目链接:hdu_3247_Resource Archiver 题意: 有n个资源串,m个病毒串,现在要将所有的资源串整合到一个串内,并且这个串不能包括病毒串,问最短的串长为多少 题解: 将资源串和病 ...

  8. 浅析const标识符在C++函数的功能

    范例: class matrix { public: matrix(){}; const double getvalue(const unsigned row, const unsigned colu ...

  9. MySQL中整型数据的差别

    bigint 从 -2^63 (-9223372036854775808) 到 2^63-1 (9223372036854775807) 的整型数据(所有数字).存储大小为 8 个字节. P.S. b ...

  10. Mysql授权远程登录

    在命令行输入如下命令即可: Grant all privileges on *.* to ' with grant option; 再执行 flush privileges