zoj 3537 Cake (凸包确定+间隔dp)
Cake
Time Limit: 1 Second
Memory Limit: 32768 KB
You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two vertices
of the polygon. Within the polygon, any two cuts ought to be disjoint. Of course, the situation that only the endpoints of two segments intersect is allowed.
The cake's considered as a coordinate system. You have known the coordinates of vexteces. Each cut has a cost related to the coordinate of the vertex, whose formula is
costi, j = |xi + xj| * |yi + yj| % p. You want to calculate the minimum cost.
NOTICE: input assures that NO three adjacent vertices on the polygon-shaped cake are in a line. And the cake is not always a convex.
Input
There're multiple cases. There's a blank line between two cases. The first line of each case contains two integers,
N and p (3 ≤ N, p ≤ 300), indicating the number of vertices. Each line of the following
N lines contains two integers, x and y (-10000 ≤
x, y ≤ 10000), indicating the coordinate of a vertex. You have known that no two vertices are in the same coordinate.
Output
If the cake is not convex polygon-shaped, output "I can't cut.". Otherwise, output the minimum cost.
Sample Input
3 3
0 0
1 1
0 2
Sample Output
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define maxn 105
#define MAXN 100005
#define mod 1000000000
#define INF 0x3f3f3f3f
#define pi acos(-1.0)
#define eps 1e-8
typedef long long ll;
using namespace std; int cmp(int x)
{
if(fabs(x)<eps) return 0;
if(x>0) return 1;
return -1;
}
int sqr(int x)
{
return x*x;
}
struct point
{
int x,y;
point(){};
point(int a,int b):x(a),y(b){};
void input()
{
scanf("%d%d",&x,&y);
}
friend point operator +(const point &a,const point &b)
{
return point(a.x+b.x,a.y+b.y);
}
friend point operator -(const point &a,const point &b)
{
return point(a.x-b.x,a.y-b.y);
}
friend bool operator ==(const point &a,const point &b)
{
return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
}
friend point operator *(const point &a,const int &b)
{
return point(a.x*b,a.y*b);
}
friend point operator *(const int &a,const point &b)
{
return point(a*b.x,a*b.y);
}
friend point operator /(const point &a,const int &b)
{
return point(a.x/b,a.y/b);
}
int norm()
{
return sqrt(sqr(x)+sqr(y));
}
};
int det(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
}
int dot(const point&a,const point &b)
{
return a.x*b.x+a.y*b.y;
}
int dist(const point &a,const point &b)
{
return (a-b).norm();
} struct polygon_convex
{
vector<point>p;
polygon_convex(int Size=0)
{
p.resize(Size);
}
};
bool comp_less(const point &a,const point &b)
{
return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0;
}
polygon_convex convex_hull(vector<point> a)
{
polygon_convex res(2*a.size()+5);
sort(a.begin(),a.end(),comp_less);
a.erase(unique(a.begin(),a.end()),a.end());
int m=0;
for(int i=0;i<a.size();i++)
{
while(m>1&&cmp(det(res.p[m-1]-res.p[m-2],a[i]-res.p[m-2]))<=0) m--;
res.p[m++]=a[i];
}
int k=m;
for(int i=int(a.size())-2;i>=0;--i)
{
while(m>k&&cmp(det(res.p[m-1]-res.p[m-2],a[i]-res.p[m-2]))<=0) m--;
res.p[m++]=a[i];
}
res.p.resize(m);
if(a.size()>1) res.p.resize(m-1);
return res;
} int n,m,ans;
int dp[305][305],cost[305][305];
vector<point> pp; int main()
{
int i,j,t;
while(~scanf("%d%d",&n,&m))
{
vector<point> pp;
point tmp;
for(i=1;i<=n;i++)
{
scanf("%d%d",&tmp.x,&tmp.y);
pp.push_back(tmp);
}
polygon_convex tb=convex_hull(pp);
if(tb.p.size()!=n) printf("I can't cut.\n");
else
{
if(n==3)
{
printf("0\n");
continue ;
}
memset(cost,0,sizeof(cost));
for(i=0;i<n;i++)
{
for(j=i+2;j<n;j++)
{
cost[i][j]=(abs(tb.p[i].x+tb.p[j].x)*abs(tb.p[i].y+tb.p[j].y))%m;
}
}
memset(dp,0x3f,sizeof(dp));
for(i=0;i<n-2;i++)
{
dp[i][i+1]=0;
dp[i][i+2]=0;
}
dp[n-2][n-1]=0;
for(int len=4;len<=n;len++)
{
for(i=0;i<n;i++)
{
j=i+len-1;
if(j>=n) break ;
for(int k=i+1;k<=j-1;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}
printf("%d\n",dp[0][n-1]);
}
}
return 0;
}
/*
3 3
0 0
1 1
0 2 4 10
0 0
2 0
0 2
2 2 5 11
1 1
1 3
3 1
4 2
3 4
*/
版权声明:本文博客原创文章,博客,未经同意,不得转载。
zoj 3537 Cake (凸包确定+间隔dp)的更多相关文章
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- zoj 3537 Cake(区间dp)
这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三 ...
- 区间DP Zoj 3537 Cake 区间DP 最优三角形剖分
下面是别人的解题报告的链接,讲解很详细,要注意细节的处理...以及为什么可以这样做 http://blog.csdn.net/woshi250hua/article/details/7824433 我 ...
- ZOJ 3537 Cake (区间DP,三角形剖分)
题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2 ...
- ZOJ 3537 (凸包 + 区间DP)(UNFINISHED)
#include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator &l ...
随机推荐
- java.nio分析软件包(三)---Charset理解力
前面的分析后,2一个基本的封装类型.现在我们就来揭开Java.nio魔法知识的最后一块,CharsetEncoding类,他的主要功能是实现字节Unicode之间的转换转码. 让我们来看看他同样的封装 ...
- ssh否password登陆server
在线辅导课非常多,但仍录,使用时方便日后查询. 两server,内联网ip每间: 172.16.3.91 (本地计算机) 172.16.3.92 (远程机) 现在想在本地计算机上通过ssh 172.1 ...
- 复制360于Launcher浮动窗口的屏幕显示内存使用情况(基本版)
MainActivity如下面: package cc.cc; import android.os.Bundle; import android.view.View; import android.v ...
- Directx11学习笔记【十九】 摄像机的实现
本文由zhangbaochong原创,转载请注明出处:http://www.cnblogs.com/zhangbaochong/p/5785100.html 之前为了方便观察场景,我们采用的方法是鼠标 ...
- 管理Android通信录
Android提供了Contacts应用程序来管理联系人,并且Android系统还为联系人管理提供了ContentProvider,这就同意其他应用程序以ContentResolver来管理联系人数据 ...
- HTML——博客页面布局
HTML文件 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/htm ...
- NET WEB
.NET WEB程序员需要掌握的技能 2015-12-28 08:50 by 敏捷的水, 3997 阅读, 66 评论, 收藏, 编辑 本来这个是我给我们公司入职的新人做一个参考,由于 @张善友 老师 ...
- HDU 2012 素性
素性 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submiss ...
- Apple Watch 1.0 开发介绍 1.3 简介 WatchKit App 架构
WatchKit app和WatchKit extension一起实现了app的界面.当用户在Apple Watch中操作时,WatchKit app从storyboards中选择合适的场景.比如,如 ...
- 最短路径:Dijkstra,Bellman,SPFA,Floyd该算法的实施
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzQ4NzA1MQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...