HDU 5868 Different Circle Permutation(burnside 引理)
HDU 5868 Different Circle Permutation(burnside 引理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5868
Description
You may not know this but it's a fact that Xinghai Square is Asia's largest city square. It is located in Dalian and, of course, a landmark of the city. It's an ideal place for outing any time of the year. And now:
There are N children from a nearby primary school flying kites with a teacher. When they have a rest at noon, part of them (maybe none) sit around the circle flower beds. The angle between any two of them relative to the center of the circle is always a multiple of 2π/N but always not 2π/N.
Now, the teacher raises a question: How many different ways there are to arrange students sitting around the flower beds according to the rule stated above. To simplify the problem, every student is seen as the same. And to make the answer looks not so great, the teacher adds another specification: two ways are considered the same if they coincide after rotating.
Input
There are T tests (T≤50). Each test contains one integer N. 1≤N≤1000000000 (10^9). Process till the end of input.
Output
For each test, output the answer mod 1000000007 (10^9+7) in one line.
Sample Input
4
7
10
Sample Output
3
5
15
题意:
有n个人假设完全一样,其中有一部分人坐成一个圆,这些人中任意两个人之间的距离是2π/N的倍数,但是不是2π/N。如果有两种坐法,一种通过旋转可以变成另外一种坐法,我们就可以认为这是一种坐法,问总共有多少种坐法?
题解:
题解参照https://async.icpc-camp.org/d/546-2016 先膜一发菊苣。
首先是不考虑旋转同构的情况下,我们自己手动推几个就可以得到一个公式就是f(n)=f(n-1)+f(n-2)。这里我们注意一点,就是当n=1的时候我们当其为1 。(具体原因我也不清楚)。
然后就是我们使用 burnside 引理(对于一个置换f,若一个着色方案s经过置换后不变,称s为f的不动点。将f的不动点数目记为C(f),则可以证明等价类数目为所有C(f)的平均值。此结论称为 burnside 引理————来自训练指南)。
下面则是求不动点数目。对于这个我们则是依次计算旋转1,2,……n的不动点数目。前面我们定义了f(n)为不考虑旋转同构的状态。下面就是将循环数代入即可,其中循环节的个数为gcd(i,n)。
当然直枚举每个点必然会超时。我们可以使用 (∑f(d)*φ(n/d))/n 代替。其中d是n的因子。
代码:
#include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9+7 ;
struct matrix {
long long x1,x2 ;
long long x3,x4 ;
};
matrix mul(matrix a,matrix b){
matrix ans ;
ans.x1 = (a.x1*b.x1 + a.x2*b.x3)%mod ;
ans.x2 = (a.x1*b.x2 + a.x2*b.x4)%mod ;
ans.x3 = (a.x3*b.x1 + a.x4*b.x3)%mod ;
ans.x4 = (a.x3*b.x2 + a.x4*b.x4)%mod ;
return ans ;
}
long long quick_matrix(long long x){
x -= 4 ;
matrix ans,cal ;
ans.x1 = ans.x2 = ans.x3 = 1 ; ans.x4 = 0 ;
cal.x1 = cal.x2 = cal.x3 = 1 ; cal.x4 = 0 ;
while (x){
if (x%2)
ans = mul(ans,cal) ;
cal = mul(cal,cal) ;
x >>= 1 ;
}
return (ans.x1*4+ans.x2*3)%mod ;
}
long long fx(long long x){
if (x == 1)
return 1;
else if (x == 2)
return 3;
else if (x == 3)
return 4;
else return quick_matrix(x) ;
}
long long quick(long long a,long long n){
long long ans = 1 ;
long long cal = a ;
while (n){
if (n%2)
ans = (ans*cal)%mod ;
cal = (cal*cal)%mod;
n >>= 1;
}
return ans ;
}
long long euler(long long n)
{
long long ans = n;
long long i;
for (i = 2; i*i <= n; i++){
if (n%i == 0){
while (n%i == 0)
n /= i;
ans = ans/i*(i-1) ;
}
}
if (n != 1)
ans = ans/n*(n-1);
return ans;
}
long long solve(long long n){
if (n == 1)
return 2;
long long ans = 0;
long long nn = n ;
long long d;
long long i;
for (i = 1; i*i < n; i++){
if (n%i == 0){
ans = (ans + fx(i)*euler(nn/i) + fx(nn/i)*euler(i))%mod ;
}
}
if (i*i == n)
ans = (ans + fx(i)*euler(i))%mod ;
return (ans*quick(nn,mod-2))%mod;
}
int main()
{
long long n;
while (~scanf("%lld",&n))
printf("%lld\n",solve(n)) ;
return 0 ;
}
HDU 5868 Different Circle Permutation(burnside 引理)的更多相关文章
- HDU 5868 Different Circle Permutation Burnside引理+矩阵快速幂+逆元
题意:有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种.如4个座位有3种做法.\( 1≤N≤1000000000 (10^9) \). 题解:首先考虑座位不相邻的选法问题,如果不 ...
- 解题:HDU 5868 Different Circle Permutation
题面 先往上套Burnside引理 既然要求没有$\frac{2*π}{n}$的角,也就是说两个人不能挨着,那么相当于给一个环黑白染色,两个相邻的点不能染白色,同时求方案数.考虑$n$个置换子群,即向 ...
- hdu 5868:Different Circle Permutation 【Polya计数】
似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...
- HDU 5868 Different Circle Permutation
公式,矩阵快速幂,欧拉函数,乘法逆元. $an{s_n} = \frac{1}{n}\sum\limits_{d|n} {\left[ {phi(\frac{n}{d})×\left( {fib(d ...
- hdu 5868 2016 ACM/ICPC Asia Regional Dalian Online 1001 (burnside引理 polya定理)
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
- hdu 5868 Polya计数
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
- 【等价的穿越】Burnside引理&Pólya计数法
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...
- [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
- POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 3731 Accepted: 1227 D ...
随机推荐
- IOS开发的内存管理
关于IOS开发的内存管理的文章已经很多了,因此系统的知识点就不写了,这里我写点平时工作遇到的疑问以及解答做个总结吧,相信也会有人遇到相同的疑问呢,欢迎学习IOS的朋友请加ios技术交流群:190956 ...
- tornado + supervisor + nginx + linux 亲身体验
先说说思路 一.安装这些东西,tornado, supervisor( sudo pip install supervisor 在linux 系统上), 安装 nginx (sudo apt-ge ...
- [置顶] 让我爱恨的ThinkPHP Relation
还记得第一次用ThinkPHP的relation,做了一个关联查询,觉得特别好用.有那么一天尝试着用关联插入,怎么插,都插不进,我插,我擦! 后来在龙哥的指点下算是成功的实践了一次,后来怎么用都不顺, ...
- 用友CDM系统“货位间商品移库单(一步)”表体增加“货位可用数量”字段,根据表头的选择的货位自动带出数值
系统控制台——业务单据定制——货位间商品移库单(一步) 明细字段——增加“可销数量”字段. 然后修改明细字段的“商品编号”自定义查询方案. 增加自定义资料检索方案hwyksp SQL: select ...
- Android系统移植(一)-让android系统在目标平台上运行起来
编号),文件系统采用ubifs格式,控制台设备为ttyS1,波特率为115200 启动的第一个应用程序是/init (6)确保控制台的设置和硬件保持一致,如:硬件上串口用的是UART1,则内核启动参数 ...
- [置顶] 安卓UI组件之ListView详解
ListView是很常见的一个UI组件,在许多App中都很常用,其意思就是可滚动的列表,使用ListView必须使用Adapter(适配器),常用的适配器友谊ArrayAdapter,SimpleAd ...
- Transform.TransformDirection 变换方向
官方描述: JavaScript ⇒ TransformDirection(direction: Vector3): Vector3; C# ⇒ Vector3 TransformDirection( ...
- 【6】锋利的 jQuery 笔记
1. 代码技巧 1. 利用 id, class 实现同级隐藏显示 效果如下: 2. 字体放大效果 效果图: 3. tab 切换 效果图: 4. 切换样式 添加 Cookie 效果图: 5. 编写插件 ...
- xtrabackup 开启压缩备份
完整备份innobackupex --defaults-file=/etc/my.cnf --host=localhost --user=bkpuser --password=s3cret /data ...
- git commit
使用 git add 命令将想要快照的内容写入缓存区, 而执行 git commit 将缓存区内容添加到仓库中. Git 为你的每一个提交都记录你的名字与电子邮箱地址,所以第一步需要配置用户名和邮箱地 ...
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5868
Description
You may not know this but it's a fact that Xinghai Square is Asia's largest city square. It is located in Dalian and, of course, a landmark of the city. It's an ideal place for outing any time of the year. And now:
There are N children from a nearby primary school flying kites with a teacher. When they have a rest at noon, part of them (maybe none) sit around the circle flower beds. The angle between any two of them relative to the center of the circle is always a multiple of 2π/N but always not 2π/N.
Now, the teacher raises a question: How many different ways there are to arrange students sitting around the flower beds according to the rule stated above. To simplify the problem, every student is seen as the same. And to make the answer looks not so great, the teacher adds another specification: two ways are considered the same if they coincide after rotating.
Input
There are T tests (T≤50). Each test contains one integer N. 1≤N≤1000000000 (10^9). Process till the end of input.
Output
For each test, output the answer mod 1000000007 (10^9+7) in one line.
Sample Input
4
7
10
Sample Output
3
5
15
题意:
有n个人假设完全一样,其中有一部分人坐成一个圆,这些人中任意两个人之间的距离是2π/N的倍数,但是不是2π/N。如果有两种坐法,一种通过旋转可以变成另外一种坐法,我们就可以认为这是一种坐法,问总共有多少种坐法?
题解:
题解参照https://async.icpc-camp.org/d/546-2016 先膜一发菊苣。
首先是不考虑旋转同构的情况下,我们自己手动推几个就可以得到一个公式就是f(n)=f(n-1)+f(n-2)。这里我们注意一点,就是当n=1的时候我们当其为1 。(具体原因我也不清楚)。
然后就是我们使用 burnside 引理(对于一个置换f,若一个着色方案s经过置换后不变,称s为f的不动点。将f的不动点数目记为C(f),则可以证明等价类数目为所有C(f)的平均值。此结论称为 burnside 引理————来自训练指南)。
下面则是求不动点数目。对于这个我们则是依次计算旋转1,2,……n的不动点数目。前面我们定义了f(n)为不考虑旋转同构的状态。下面就是将循环数代入即可,其中循环节的个数为gcd(i,n)。
当然直枚举每个点必然会超时。我们可以使用 (∑f(d)*φ(n/d))/n 代替。其中d是n的因子。
代码:
#include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9+7 ;
struct matrix {
long long x1,x2 ;
long long x3,x4 ;
};
matrix mul(matrix a,matrix b){
matrix ans ;
ans.x1 = (a.x1*b.x1 + a.x2*b.x3)%mod ;
ans.x2 = (a.x1*b.x2 + a.x2*b.x4)%mod ;
ans.x3 = (a.x3*b.x1 + a.x4*b.x3)%mod ;
ans.x4 = (a.x3*b.x2 + a.x4*b.x4)%mod ;
return ans ;
}
long long quick_matrix(long long x){
x -= 4 ;
matrix ans,cal ;
ans.x1 = ans.x2 = ans.x3 = 1 ; ans.x4 = 0 ;
cal.x1 = cal.x2 = cal.x3 = 1 ; cal.x4 = 0 ;
while (x){
if (x%2)
ans = mul(ans,cal) ;
cal = mul(cal,cal) ;
x >>= 1 ;
}
return (ans.x1*4+ans.x2*3)%mod ;
}
long long fx(long long x){
if (x == 1)
return 1;
else if (x == 2)
return 3;
else if (x == 3)
return 4;
else return quick_matrix(x) ;
}
long long quick(long long a,long long n){
long long ans = 1 ;
long long cal = a ;
while (n){
if (n%2)
ans = (ans*cal)%mod ;
cal = (cal*cal)%mod;
n >>= 1;
}
return ans ;
}
long long euler(long long n)
{
long long ans = n;
long long i;
for (i = 2; i*i <= n; i++){
if (n%i == 0){
while (n%i == 0)
n /= i;
ans = ans/i*(i-1) ;
}
}
if (n != 1)
ans = ans/n*(n-1);
return ans;
}
long long solve(long long n){
if (n == 1)
return 2;
long long ans = 0;
long long nn = n ;
long long d;
long long i;
for (i = 1; i*i < n; i++){
if (n%i == 0){
ans = (ans + fx(i)*euler(nn/i) + fx(nn/i)*euler(i))%mod ;
}
}
if (i*i == n)
ans = (ans + fx(i)*euler(i))%mod ;
return (ans*quick(nn,mod-2))%mod;
}
int main()
{
long long n;
while (~scanf("%lld",&n))
printf("%lld\n",solve(n)) ;
return 0 ;
}
题意:有N个座位,人可以选座位,但选的座位不能相邻,且旋转不同构的坐法有几种.如4个座位有3种做法.\( 1≤N≤1000000000 (10^9) \). 题解:首先考虑座位不相邻的选法问题,如果不 ...
题面 先往上套Burnside引理 既然要求没有$\frac{2*π}{n}$的角,也就是说两个人不能挨着,那么相当于给一个环黑白染色,两个相邻的点不能染白色,同时求方案数.考虑$n$个置换子群,即向 ...
似乎是比较基础的一道用到polya定理的题,为了这道题扣了半天组合数学和数论. 等价的题意:可以当成是给正n边形的顶点染色,旋转同构,两种颜色,假设是红蓝,相邻顶点不能同时为蓝. 大概思路:在不考虑旋 ...
公式,矩阵快速幂,欧拉函数,乘法逆元. $an{s_n} = \frac{1}{n}\sum\limits_{d|n} {\left[ {phi(\frac{n}{d})×\left( {fib(d ...
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 262144/262144 K ...
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 3731 Accepted: 1227 D ...
关于IOS开发的内存管理的文章已经很多了,因此系统的知识点就不写了,这里我写点平时工作遇到的疑问以及解答做个总结吧,相信也会有人遇到相同的疑问呢,欢迎学习IOS的朋友请加ios技术交流群:190956 ...
先说说思路 一.安装这些东西,tornado, supervisor( sudo pip install supervisor 在linux 系统上), 安装 nginx (sudo apt-ge ...
还记得第一次用ThinkPHP的relation,做了一个关联查询,觉得特别好用.有那么一天尝试着用关联插入,怎么插,都插不进,我插,我擦! 后来在龙哥的指点下算是成功的实践了一次,后来怎么用都不顺, ...
系统控制台——业务单据定制——货位间商品移库单(一步) 明细字段——增加“可销数量”字段. 然后修改明细字段的“商品编号”自定义查询方案. 增加自定义资料检索方案hwyksp SQL: select ...
编号),文件系统采用ubifs格式,控制台设备为ttyS1,波特率为115200 启动的第一个应用程序是/init (6)确保控制台的设置和硬件保持一致,如:硬件上串口用的是UART1,则内核启动参数 ...
ListView是很常见的一个UI组件,在许多App中都很常用,其意思就是可滚动的列表,使用ListView必须使用Adapter(适配器),常用的适配器友谊ArrayAdapter,SimpleAd ...
官方描述: JavaScript ⇒ TransformDirection(direction: Vector3): Vector3; C# ⇒ Vector3 TransformDirection( ...
1. 代码技巧 1. 利用 id, class 实现同级隐藏显示 效果如下: 2. 字体放大效果 效果图: 3. tab 切换 效果图: 4. 切换样式 添加 Cookie 效果图: 5. 编写插件 ...
完整备份innobackupex --defaults-file=/etc/my.cnf --host=localhost --user=bkpuser --password=s3cret /data ...
使用 git add 命令将想要快照的内容写入缓存区, 而执行 git commit 将缓存区内容添加到仓库中. Git 为你的每一个提交都记录你的名字与电子邮箱地址,所以第一步需要配置用户名和邮箱地 ...