/*

本题的思路比较简单,就是将递推公式写出来,然后表达成为一个矩阵的形式

最后通过计算就可以得到一个符合题目要求的矩阵,

然后就是将矩阵上面所有的对角线元素相加

得到的结果即为所求的目标

*/

#include<cstdio> 
#include<cstring> 
using namespace std; 
const int maxn = 15; 
#define mod 9973 
int res[maxn][maxn]; 
int n; 
void mul(int a[][15],int b[][15],int c[][15]){ 
    int temp[15][15];  memset(temp,0,sizeof(temp)); 
    for(int i=0;i<n;i++) 
      for(int j=0;j<n;j++) 
        for(int k=0;k<n;k++){
           temp[i][j]=(temp[i][j]+ a[i][k]*b[k][j] )%mod; 
        } 
    memcpy(c,temp,sizeof(temp)); 
}
void pow(int a[][15],int k){ 
     while(k){ 
         if(k&1){ 
             mul(res,a,res); 
         } 
         mul(a,a,a); 
         k>>=1; 
     //    printf("%d\n",k); 
     } 

int main(){ 
    int T,k; 
    int a[maxn][maxn]; 
    scanf("%d",&T); 
    while(T--){ 
        scanf("%d%d",&n,&k); 
        for(int i=0;i<n;i++)  for(int j=0;j<n;j++)  res[i][j]=(i==j); 
        //这个做法主要是将对角线标记出来,然后就可以与矩阵a相乘,最后得到的a矩阵就是一个对角矩阵
        for(int i=0;i<n;i++)  for(int j=0;j<n;j++)  scanf("%d",&a[i][j]); 
        pow(a,k); 
        int ans=0; 
        for(int i=0;i<n;i++) ans+=res[i][i]; 
        printf("%d\n",ans%mod); 
    } 
    return 0; 

//自己现在最大的问题就是知道矩阵相乘的方法,但是将一个数组的问题处理好就没办法了……

////////////////////////////////////////////////////////////////////////////////////////////////////////////

矩阵方面的问题处理参考方式

矩阵乘法
struct Matrix{
    long long mat[N][N];
    Matrix operator*(const Matrix m)const{
        Matrix tmp;
        for(int i = 0;i < n;i++){
            for(int j = 0;j < n;j++){
                tmp.mat[i][j] = 0;//完成初始化
                for(int k = 0;k < n;k++){
                    tmp.mat[i][j] += mat[i][k]*m.mat[k][j]%MOD;
                    tmp.mat[i][j] %= MOD;
                }}}
        return tmp;
//这个是通过new一个空间后达到目的的,所以后面会有空间的保留,可以通过这种方式将数组传递下来
    }
};

矩阵快速幂——将运算推广到矩阵上HDU 1575的更多相关文章

  1. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  2. hdu3306 Another kind of Fibonacci【矩阵快速幂】

    转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://acm.hdu.edu.cn/showproblem. ...

  3. [技术]浅谈OI中矩阵快速幂的用法

    前言 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,矩阵的运算是数值分析领域的重要问题. 基本介绍 (该部分为入门向,非入门选手可以跳过) 由 m行n列元素排列成的矩形阵列.矩阵里的 ...

  4. BZOJ 2004 公交线路(状压DP+矩阵快速幂)

    注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...

  5. 解题报告:poj 3070 - 矩阵快速幂简单应用

    2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...

  6. HDU 2276 Kiki & Little Kiki 2( 矩阵快速幂 + 循环同构矩阵 )

    蒟蒻的我还需深入学习 链接:传送门 题意:给出一个长度为 n,n 不超过100的 01 串 s ,每当一个数字左侧为 1 时( 0的左侧是 n-1 ),这个数字就会发生改变,整个串改变一次需要 1s ...

  7. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  8. hdu 5451 Best Solver 矩阵循环群+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=5451 题意:给定x    求解 思路: 由斐波那契数列的两种表示方法, 之后可以转化为 线性表示 F[n] = ...

  9. hdu 1005 Number Sequence(矩阵快速幂,找规律,模版更通用)

    题目 第一次做是看了大牛的找规律结果,如下: //显然我看了答案,循环节点是48,但是为什么是48,据说是高手打表出来的 #include<stdio.h> int main() { ], ...

随机推荐

  1. linux远程登录ssh免密码

    原文链接,感谢原作者. (一)问题: 假如我们现在有两台机器:ServerA和ServerB,现在想要让ServerA不用输入密码就能够进行访问. (二)方法和原理: 我们使用ssh-keygen在S ...

  2. 使用MyBatis3时 selectOne 方法返回null的问题记录

    不多废话,直接上干货. mapper配置: <resultMap type="User" id="usermap"> <result colu ...

  3. xss框架的一些想法

    今天pybeef作为一个课程设计答辩完成了,向老师介绍了很多xss利用相关的场景和技术. 先说一下已经实现了什么, 1, 浏览器版本的判断 这方面只能判断IE和firefox 火狐判断只判断了user ...

  4. 九章lintcode作业题

    1 - 从strStr谈面试技巧与代码风格 必做题: 13.字符串查找 要求:如题 思路:(自写AC)双重循环,内循环读完则成功 还可以用Rabin,KMP算法等 public int strStr( ...

  5. 《JS权威指南学习总结--8.4 作为值的函数》

    内容要点:   函数可以定义,也可以调用,这是函数最重要的特性.函数定义和调用是JS的词法特性,对于其他大多数编程语言来说也是如此.然而在JS中,函数不仅仅是一种语法,也是值,也就是说,可以将函数赋值 ...

  6. 【2】Chrome - 快捷键

    记录一下 Chrome 常用的快捷键 温馨提示:点击快捷键回链接到对应的图文 快捷键汇总: 1. Ctrl + [ 或 Ctil + ]  ( Mac: Cmd + [ 或 Cmd + ] ): 移动 ...

  7. java中三大修饰符

    一.static 1.属性:类变量 定义在类以内,方法以外,全类有效,全类公共一个属性 类变量与创建对象无关,有默认值0 使用方式  类名.类变量     System.out.println(); ...

  8. Linux启动新进程的几种方法及比较[转]

    有时候,我们需要在自己的程序(进程)中启动另一个程序(进程)来帮助我们完成一些工作,那么我们需要怎么才能在自己的进程中启动其他的进程呢?在Linux中提供了不少的方法来实现这一点,下面就来介绍一个这些 ...

  9. 【解题报告】瑞士轮(NOIP2011普及组T3)

    [题外话:这道题吧……说实话我不太喜欢……因为卡快排.] 题目不贴了,就是给你一个赛制,然后各个选手的初始得分和能力值,问你进行R轮比赛之后第Q名的编号是多少(这个编号读进来就要算OYZ,初始快排的时 ...

  10. hdu_5618_Jam's problem again(cdq分治+lowbit)

    题目链接:hdu_5618_Jam's problem again 题意: 给你n个点,每个点有一个坐标(x,y,z),找出有ans个点,3个坐标都比该点小,这个点的level就为ans,然后让你输出 ...