Keras神经网络集成技术

create_keras_neuropod

将Keras模型打包为神经网络集成包。目前,上文已经支持TensorFlow后端。

create_keras_neuropod(

neuropod_path,

model_name,

sess,

model,

node_name_mapping = None,

input_spec = None,

output_spec = None,

input_tensor_device = None,

default_input_tensor_device = GPU,

custom_ops = [],

package_as_zip = True,

test_input_data = None,

test_expected_out = None,

persist_test_data = True,

)

参数:

neuropod_path

neuropod输出路径

model_name

模型名称

Sess

包含权重的TensorFlow会话(一般是keras.backend.get_session())

model

一种 Keras model 目标.

node_name_mapping

default: None

从neuropod输入/输出名称到Keras输入/输出名称的可选映射。

Example:

{

"x": "input_1",

"out": "fc1000",

}

默认状态,用 Keras input/output 名称代替 neuropod input/output 名称。

input_spec

default: None

指定模型输入的dict列表。对于每个输入,如果shape设置为None,则不对该形状进行验证。如果shape是元组,则根据该元组验证输入的维度。任何维度的值为“无”表示将不检查该维度。数据类型可以是任何有效的numpy数据类型字符串。

Example:

[
    {"name": "x", "dtype": "float32", "shape": (None,)},
    {"name": "y", "dtype": "float32", "shape": (None,)},
]

output_spec

default: None

指定模型输出的dict列表。有关详细信息,请参阅input_spec参数的文档。

Example:

[
    {"name": "out", "dtype": "float32", "shape": (None,)},
]

input_tensor_device

default: None

dict将输入张量名称映射到模型希望它们在其上的设备。这可以是GPU或CPU。此映射中未指定的输入规格中的任何张量都将使用下面指定的默认输入张量设备default_input_tensor_device。

如果在推断时选择了GPU,则在运行模型之前,神经网络集成软件会将张量移动到适当的设备。否则,它将尝试在CPU上运行模型,并将所有张量(和模型)移到CPU上。

有关更多信息,请参阅load_neurood的文档字符串。

Example:

{"x": "GPU"}

default_input_tensor_device

default: GPU

输入张量的默认设备应该打开。这可以是GPU或CPU。

custom_ops

default: []

要包含在打包的neuropod中的自定义op共享库的路径列表。

注意:包括定制操作将您的neuropod绑定到定制操作为之构建的特定平台(如Mac、Linux)。用户有责任确保为正确的平台构建自定义操作。

Example:

["/path/to/my/custom_op.so"]

package_as_zip

default: True

是将neuropod打包为一个文件还是一个目录。

test_input_data

default: None

可选样本输入数据。这是一个将输入名称映射到值的dict。如果提供了这一点,则在包装后立即在隔离环境中运行推断,以确保成功创建了神经网络集成软件。如果提供了预期的测试test_expected_out,则必须提供。

如果推断失败,则引发ValueError。

Example:

{
    "x": np.arange(5),
    "y": np.arange(5),
}

test_expected_out

default: None

可选的预期输出。如果模型推断的输出与预期的输出不匹配,则引发ValueError。

Example:

{
    "out": np.arange(5) + np.arange(5)
}

persist_test_data

default: True

可选地将测试数据保存在包装好的神经网络集成软件内。

Keras神经网络集成技术的更多相关文章

  1. Python神经网络集成技术Guide指南

    Python神经网络集成技术Guide指南 本指南将介绍如何加载一个神经网络集成系统并从Python运行推断. 提示 所有框架的神经网络集成系统运行时接口都是相同的,因此本指南适用于所有受支持框架(包 ...

  2. TorchScript神经网络集成技术

    TorchScript神经网络集成技术 create_torchscript_neuropod 将TorchScript模型打包为neuropod包. create_torchscript_neuro ...

  3. PyTorch神经网络集成技术

    PyTorch神经网络集成技术 create_python_neuropod 将任意python代码打包为一个neurood包. create_python_neuropod( neuropod_pa ...

  4. neurosolutions 人工神经网络集成开发环境 keras

    人工神经网络集成开发环境 :  http://www.neurosolutions.com/ keras:   https://github.com/fchollet/keras 文档    http ...

  5. 3DGIS与BIM集成集成技术及铁路桥梁可视化系统

    3DGIS与BIM的集成技术 3DGIS与BIM的集成技术包括2部分:一是将Revit软件生成的BIM针对3DGIS的快速无损格式转换,这种转换包括几何信息(如形状.位置等信息)和属性信息(如建筑信息 ...

  6. TensorFlow神经网络集成方案

    TensorFlow神经网络集成方案 创造张力流create_tensorflow_neuropod 将TensorFlow模型打包为neuropod包. create_tensorflow_neur ...

  7. spring+websocket综合(springMVC+spring+MyBatis这是SSM框架和websocket集成技术)

    java-websocket该建筑是easy.儿童无用的框架可以在这里下载主线和个人教学好java-websocket计划: Apach Tomcat 8.0.3+MyEclipse+maven+JD ...

  8. fir.im 持续集成技术实践

    互联网时代,人人都在追求产品的快速响应.快速迭代和快速验证.不论是创业团队还是大中型企业,都在探索属于自己的敏捷开发.持续交付之道.fir.im 团队也在全面实施敏捷,并推出新持续集成服务 - flo ...

  9. keras神经网络三个例子

    keras构造神经网络,非常之方便!以后就它了.本文给出了三个例子,都是普通的神经网络 例一.离散输出,单标签.多分类 例二.图像识别,单标签.多分类.没有用到卷积神经网络(CNN) 例三.时序预测, ...

随机推荐

  1. php 操作 redis 常用命令

    原文地址: https://www.cnblogs.com/zhanghanwen16/p/9510481.html 1.redis连接与认证 //连接参数:ip.端口.连接超时时间,连接成功返回tr ...

  2. Android APK程序的smali动态调试

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/71250622 一.Apktool的下载和安装 Apktool是Android逆向分 ...

  3. Cookie、Session和Token认证

    目录 Cookie Session认证机制 Session的一些安全配置 Token认证机制 Token预防CSRF Session认证和Token认证的区别 前言:HTTP是一种无状态的协议,为了分 ...

  4. Win64 驱动内核编程-11.回调监控进线程句柄操作

    无HOOK监控进线程句柄操作 在 NT5 平台下,要监控进线程句柄的操作. 通常要挂钩三个API:NtOpenProcess.NtOpenThread.NtDuplicateObject.但是在 VI ...

  5. Andrew Ng机器学习算法入门(八):正规方程

    正规方程 在先学习正规方程之前,先来复习一下之前学过的常规的回归方程的解法. 假设存在如果的代价函数, ,解法也十分的简答. 但是有时候遇到的情况或许会变得相当的复杂. 的数,如果是按照常规的方式进行 ...

  6. 冒泡排序——Python实现

    冒泡排序Python实现 # -*- coding: utf-8 -*- # @Time : 2019/10/28 19:41 # @Author : yuzhou_1shu # @Email : y ...

  7. Linux 中如何使用 IP 命令

    老版本的 Linux 中都是使用 ifconfig 命令检查和配置网络接口,但是该命令目前已经没有维护了,取而代之的是 ip 命令 ip 命令和 ifconfig 命令很相似,但是 相比起来,ip命令 ...

  8. docker学习之使用 DockerFile 构建镜像并搭建 swarm+compose 集群

    题目要求 (1)将springboot应用程序打成jar包:Hot.jar (2)利用dockerfile将Hot.jar构建成镜像 (3)构建 Swarm 集群 (4)在 Swarm 集群中使用 c ...

  9. .NET平台系列目录

    本系列主要讲解微软.NET平台发展历程以及.NET框架技术.包含.NET Framework..NET Core.Xamarin..NET Standrad等技术与应用. 1..NET平台系列 .NE ...

  10. [Linux] Shell 脚本实例(超实用)

    文件操作 为文件(test.sh)增加执行权限 chmod +x test.sh 列出当前文件夹下所有文件(每行输出一个) 1 #!/bin/bash 2 dir=`ls ./` 3 for i in ...