稀疏性如何为AI推理增加难度
稀疏性如何为AI推理增加难度
NVIDIA Ampere架构使数学运算加倍,以加速对各种神经网络的处理。
如果曾经玩过游戏Jenga,那么将有一些AI稀疏感。
玩家将木制积木交叉成一列。然后,每个玩家轮流小心地移开一个障碍物,而不会倾倒立柱。
它从一开始就很容易,但是变得越来越毛茸茸,直到失败的玩家拔出一个障碍物,导致塔楼坠毁。
多年来,研究人员一直在努力地利用数字打积木,以利用稀疏性来加速AI。他们尝试从神经网络中提取尽可能多的不需要的参数-而不破坏AI的超高精度。
目标是减少深度学习所需的矩阵乘法堆,从而缩短达到良好结果的时间。到目前为止,还没有大赢家。
迄今为止,研究人员已经尝试了多种技术来提取神经网络中多达95%的权重。但是随后,他们花了比他们节省的时间更多的时间,不得不采取激进的步骤来弥补简化模型的准确性。适用于一种模型的步骤不适用于其他模型。
数字稀疏
NVIDIA安培架构引入了第三代张量磁芯在NVIDIA A100的GPU称取在网络权细粒度稀疏的优点。提供了高达2倍的密集数学最大吞吐量,而不会牺牲深度学习的核心矩阵乘法累加作业的准确性。
测试表明,这种稀疏方法在许多AI任务(包括图像分类,目标检测和语言翻译)中使用密集数学来维持方法的准确性。它也已经在卷积神经网络和递归神经网络以及基于注意力的转换器上进行了测试。
A100打包了稀疏矩阵以加速AI推理任务。
内部数学运算速度的提高对应用程序级别具有重大影响。使用稀疏性,A100 GPU可以运行BERT(来自转换的双向编码器表示),这是用于自然语言处理的最新模型,比密集型数学要快50%。
NVIDIA Ampere架构利用了神经网络中较小值的普遍性,从而使尽可能广泛的AI应用程序受益。具体来说,定义了一种训练神经网络的方法,该方法可以去除一半的权重,即所谓的50%稀疏度。
当做对时,少即是多
一些研究人员使用粗粒度剪枝技术,这些技术会从神经网络层中删除整个通道,从而经常降低网络的准确性。NVIDIA Ampere架构中的方法采用结构化的稀疏性和细粒度的剪枝技术,不会明显降低准确性,用户在重新训练模型时可以进行验证。
适当剪枝网络后,A100 GPU将自动完成其余工作。
A100 GPU中的Tensor Core有效压缩稀疏矩阵以启用适当的密集数学。跳过矩阵中实际上是零值位置的位置会减少计算量,节省功耗和时间。压缩稀疏矩阵还可以减少宝贵的内存和带宽的使用。
稀疏性如何为AI推理增加难度的更多相关文章
- AI推理与Compiler
AI推理与Compiler AI芯片编译器能加深对AI的理解, AI芯片编译器不光涉及编译器知识,还涉及AI芯片架构和并行计算如OpenCL/Cuda等.如果从深度学习平台获得IR输入,还需要了解深度 ...
- 使用函数计算三步实现深度学习 AI 推理在线服务
目前深度学习应用广发, 其中 AI 推理的在线服务是其中一个重要的可落地的应用场景.本文将为大家介绍使用函数计算部署深度学习 AI 推理的最佳实践, 其中包括使用 FUN 工具一键部署安装第三方依赖 ...
- 基于函数计算 + TensorFlow 的 Serverless AI 推理
前言概述 本文介绍了使用函数计算部署深度学习 AI 推理的最佳实践, 其中包括使用 FUN 工具一键部署安装第三方依赖.一键部署.本地调试以及压测评估, 全方位展现函数计算的开发敏捷特性.自动弹性伸缩 ...
- AI推理单元
AI推理单元 推理服务供了一套面向 MLU(Machine Learning Unit,机器学习单元)设备的类似服务器的推理接口(C++11标准),以及模型加载与管理,推理任务调度等功能,极大地简化了 ...
- L1、L2范式及稀疏性约束
L1.L2范式及稀疏性约束 假设需要求解的目标函数为: E(x) = f(x) + r(x) 其中f(x)为损失函数,用来评价模型训练损失,必须是任意的可微凸函数,r(x)为规范化约束因子,用来对模型 ...
- UFLDL(五)自编码算法与稀疏性
新教程内容太繁复,有空再看看,这节看的还是老教程: http://ufldl.stanford.edu/wiki/index.php/%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE ...
- 【转】自编码算法与稀疏性(AutoEncoder and Sparsity)
目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本时有类别标签的.现在假设我们只有一个没带类别标签的训练样本集合 ,其中 .自编码神经网络是一种无监督学习算法,它使用了 ...
- cuSPARSELt开发NVIDIA Ampere结构化稀疏性
cuSPARSELt开发NVIDIA Ampere结构化稀疏性 深度神经网络在各种领域(例如计算机视觉,语音识别和自然语言处理)中均具有出色的性能.处理这些神经网络所需的计算能力正在迅速提高,因此有效 ...
- 全场景AI推理引擎MindSpore Lite, 助力HMS Core视频编辑服务打造更智能的剪辑体验
移动互联网的发展给人们的社交和娱乐方式带来了很大的改变,以vlog.短视频等为代表的新兴文化样态正受到越来越多人的青睐.同时,随着AI智能.美颜修图等功能在图像视频编辑App中的应用,促使视频编辑效率 ...
随机推荐
- POJ3070矩阵快速幂简单题
题意: 求斐波那契后四位,n <= 1,000,000,000. 思路: 简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...
- Windows Pe 第三章 PE头文件-EX-相关编程-1(PE头内容获取)
获取pE头相关的内容,就是类似如下内容 原理:比较简单,直接读取PE到内存,然后直接强转就行了. #include <windows.h> #include <stdio.h> ...
- 一句 Task.Result 就死锁, 这代码还怎么写?
一:背景 1. 讲故事 前些天把 .NET 高级调试 方面的文章索引到 github 的过程中,发现了一个有意思的评论,详见 文章,截图如下: 大概就是说在 Winform 的主线程下执行 Task. ...
- ColyseusJS 轻量级多人游戏服务器开发框架 - 中文手册(系统保障篇)
快速上手多人游戏服务器开发.后续会基于 Google Agones,更新相关 K8S 运维.大规模快速扩展专用游戏服务器的文章.拥抱️原生 Cloud-Native! 系列 ColyseusJS 轻量 ...
- queryset惰性与缓存
https://blog.csdn.net/zhu6201976/article/details/83550461
- memcache 和 redis 的区别
1)Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcache相比一个最大的区别.2)Redis在很多方面具备数据库的特征,或者说就是一个数据库系统,而Memcache只是简单的K/V ...
- HUGO 创建属于自己的博客
Hugo 拥有超快的速度,强大的内容管理和强大的模板语言,使其非常适合各种静态网站.可以轻松安装在macOS,Linux,Windows等平台上,在开发过程中使用LiveReload可即时渲染更改 一 ...
- 【转载】搭建本地yum源:以下是以centos7为例子
搭建本地yum源:以下是以centos7为例子 1)首先需要安装 createrepo(需要一个可以使用源的机器,可以访问互联网)安装方法可以使用yum安装epel源 1 yum -y instal ...
- Linux下Firefox打开文件jnlp文件
ubuntu(linux)打开jnlp文件 咘咘 2019-05-20 15:12:48 1331 收藏展开 前提条件是安装有java环境.whereis java 查看自己java安装目录.本人是在 ...
- Linux 部署 iSCSI 客户端配置(Linux)
Linux 部署 iSCSI 客户端配置(Linux) 客户端环境 Client :RHEL8 IP : 192.168.121.11 一.测试与服务端的连通性 [root@Client-linux ...