概述

之前讲解了传输层的相关知识,现在讲解一下关于应用层的知识,主要是大家所熟悉的http和https,这2中是咱们最熟悉的协议了,但是也是最不熟悉的协议。

HTTP协议:看个新闻原来这么麻烦

HTTP 协议,几乎是每个人上网用的第一个协议,同时也是很容易被人忽略的协议。既然说看新闻,咱们就先登录 http://www.163.com 。http://www.163.com 是个 URL,叫作统一资源定位符。之所以叫统一,是因为它是有格式的。HTTP 称为协议,www.163.com 是一个域名,表示互联网上的一个位置。有的 URL 会有更详细的位置标识,例如 http://www.163.com/index.html 。正是因为这个东西是统一的,所以当你把这样一个字符串输入到浏览器的框里的时候,浏览器才知道如何进行统一处理。

HTTP 请求的准备

浏览器会将 www.163.com 这个域名发送给 DNS 服务器,让它解析为 IP 地址。有关 DNS 的过程,其实非常复杂,这个在后面专门介绍 DNS 的时候,我会详细描述,这里我们先不管,反正它会被解析成为 IP 地址。那接下来是发送 HTTP 请求吗?不是的,HTTP 是基于 TCP 协议的,当然是要先建立 TCP 连接了,怎么建立呢?还记得第 11 节讲过的三次握手吗?目前使用的 HTTP 协议大部分都是 1.1。在 1.1 的协议里面,默认是开启了 Keep-Alive 的,这样建立的 TCP 连接,就可以在多次请求中复用。学习了 TCP 之后,你应该知道,TCP 的三次握手和四次挥手,还是挺费劲的。如果好不容易建立了连接,然后就做了一点儿事情就结束了,有点儿浪费人力和物力。

HTTP 请求的构建

建立了连接以后,浏览器就要发送 HTTP 的请求。请求的格式就像这样。

HTTP 的报文大概分为三大部分。第一部分是请求行,第二部分是请求的首部,第三部分才是请求的正文实体。

第一部分:请求行

在请求行中,URL 就是 http://www.163.com ,版本为 HTTP 1.1。这里要说一下的,就是方法。方法有几种类型。对于访问网页来讲,最常用的类型就是 GET。顾名思义,GET 就是去服务器获取一些资源。对于访问网页来讲,要获取的资源往往是一个页面。其实也有很多其他的格式,比如说返回一个 JSON 字符串,到底要返回什么,是由服务器端的实现决定的。例如,在云计算中,如果我们的服务器端要提供一个基于 HTTP 协议的 API,获取所有云主机的列表,这就会使用 GET 方法得到,返回的可能是一个 JSON 字符串。字符串里面是一个列表,列表里面是一项的云主机的信息。

另外一种类型叫做 POST。它需要主动告诉服务端一些信息,而非获取。要告诉服务端什么呢?一般会放在正文里面。正文可以有各种各样的格式。常见的格式也是 JSON。例如,我们下一节要讲的支付场景,客户端就需要把“我是谁?我要支付多少?我要买啥?”告诉服务器,这就需要通过 POST 方法。再如,在云计算里,如果我们的服务器端,要提供一个基于 HTTP 协议的创建云主机的 API,也会用到 POST 方法。这个时候往往需要将“我要创建多大的云主机?多少 CPU 多少内存?多大硬盘?”这些信息放在 JSON 字符串里面,通过 POST 的方法告诉服务器端。

还有一种类型叫 PUT,就是向指定资源位置上传最新内容。但是,HTTP 的服务器往往是不允许上传文件的,所以 PUT 和 POST 就都变成了要传给服务器东西的方法。在实际使用过程中,这两者还会有稍许的区别。POST 往往是用来创建一个资源的,而 PUT 往往是用来修改一个资源的。例如,云主机已经创建好了,我想对这个云主机打一个标签,说明这个云主机是生产环境的,另外一个云主机是测试环境的。那怎么修改这个标签呢?往往就是用 PUT 方法。再有一种常见的就是 DELETE。这个顾名思义就是用来删除资源的。例如,我们要删除一个云主机,就会调用 DELETE 方法。

第二部分:首部字段

请求行下面就是我们的首部字段。首部是 key value,通过冒号分隔。这里面,往往保存了一些非常重要的字段。例如,Accept-Charset,表示客户端可以接受的字符集。防止传过来的是另外的字符集,从而导致出现乱码。再如,Content-Type 是指正文的格式。例如,我们进行 POST 的请求,如果正文是 JSON,那么我们就应该将这个值设置为 JSON。这里需要重点说一下的就是缓存。为啥要使用缓存呢?那是因为一个非常大的页面有很多东西。

例如,我浏览一个商品的详情,里面有这个商品的价格、库存、展示图片、使用手册等等。商品的展示图片会保持较长时间不变,而库存会根据用户购买的情况经常改变。如果图片非常大,而库存数非常小,如果我们每次要更新数据的时候都要刷新整个页面,对于服务器的压力就会很大。对于这种高并发场景下的系统,在真正的业务逻辑之前,都需要有个接入层,将这些静态资源的请求拦在最外面。这个架构的图就像这样。

其中 DNS、CDN 我在后面的章节会讲。和这一节关系比较大的就是 Nginx 这一层,它如何处理 HTTP 协议呢?对于静态资源,有 Vanish 缓存层。当缓存过期的时候,才会访问真正的 Tomcat 应用集群。在 HTTP 头里面,Cache-control 是用来控制缓存的。当客户端发送的请求中包含 max-age 指令时,如果判定缓存层中,资源的缓存时间数值比指定时间的数值小,那么客户端可以接受缓存的资源;当指定 max-age 值为 0,那么缓存层通常需要将请求转发给应用集群。

另外,If-Modified-Since 也是一个关于缓存的。也就是说,如果服务器的资源在某个时间之后更新了,那么客户端就应该下载最新的资源;如果没有更新,服务端会返回“304 Not Modified”的响应,那客户端就不用下载了,也会节省带宽。到此为止,我们仅仅是拼凑起了 HTTP 请求的报文格式,接下来,浏览器会把它交给下一层传输层。怎么交给传输层呢?其实也无非是用 Socket 这些东西,只不过用的浏览器里,这些程序不需要你自己写,有人已经帮你写好了。

HTTP 请求的发送

HTTP 协议是基于 TCP 协议的,所以它使用面向连接的方式发送请求,通过 stream 二进制流的方式传给对方。当然,到了 TCP 层,它会把二进制流变成一个个报文段发送给服务器。在发送给每个报文段的时候,都需要对方有一个回应 ACK,来保证报文可靠地到达了对方。如果没有回应,那么 TCP 这一层会进行重新传输,直到可以到达。同一个包有可能被传了好多次,但是 HTTP 这一层不需要知道这一点,因为是 TCP 这一层在埋头苦干。TCP 层发送每一个报文的时候,都需要加上自己的地址(即源地址)和它想要去的地方(即目标地址),将这两个信息放到 IP 头里面,交给 IP 层进行传输。

IP 层需要查看目标地址和自己是否是在同一个局域网。如果是,就发送 ARP 协议来请求这个目标地址对应的 MAC 地址,然后将源 MAC 和目标 MAC 放入 MAC 头,发送出去即可;如果不在同一个局域网,就需要发送到网关,还要需要发送 ARP 协议,来获取网关的 MAC 地址,然后将源 MAC 和网关 MAC 放入 MAC 头,发送出去。网关收到包发现 MAC 符合,取出目标 IP 地址,根据路由协议找到下一跳的路由器,获取下一跳路由器的 MAC 地址,将包发给下一跳路由器。这样路由器一跳一跳终于到达目标的局域网。这个时候,最后一跳的路由器能够发现,目标地址就在自己的某一个出口的局域网上。于是,在这个局域网上发送 ARP,获得这个目标地址的 MAC 地址,将包发出去。目标的机器发现 MAC 地址符合,就将包收起来;发现 IP 地址符合,根据 IP 头中协议项,知道自己上一层是 TCP 协议,于是解析 TCP 的头,里面有序列号,需要看一看这个序列包是不是我要的,如果是就放入缓存中然后返回一个 ACK,如果不是就丢弃。TCP 头里面还有端口号,HTTP 的服务器正在监听这个端口号。于是,目标机器自然知道是 HTTP 服务器这个进程想要这个包,于是将包发给 HTTP 服务器。HTTP 服务器的进程看到,原来这个请求是要访问一个网页,于是就把这个网页发给客户端。

HTTP 返回的构建

HTTP 的返回报文也是有一定格式的。这也是基于 HTTP 1.1 的。

状态码会反映 HTTP 请求的结果。“200”意味着大吉大利;而我们最不想见的,就是“404”,也就是“服务端无法响应这个请求”。然后,短语会大概说一下原因。接下来是返回首部的 key value。这里面,Retry-After 表示,告诉客户端应该在多长时间以后再次尝试一下。“503 错误”是说“服务暂时不再和这个值配合使用”。在返回的头部里面也会有 Content-Type,表示返回的是 HTML,还是 JSON。构造好了返回的 HTTP 报文,接下来就是把这个报文发送出去。还是交给 Socket 去发送,还是交给 TCP 层,让 TCP 层将返回的 HTML,也分成一个个小的段,并且保证每个段都可靠到达。这些段加上 TCP 头后会交给 IP 层,然后把刚才的发送过程反向走一遍。虽然两次不一定走相同的路径,但是逻辑过程是一样的,一直到达客户端。

客户端发现 MAC 地址符合、IP 地址符合,于是就会交给 TCP 层。根据序列号看是不是自己要的报文段,如果是,则会根据 TCP 头中的端口号,发给相应的进程。这个进程就是浏览器,浏览器作为客户端也在监听某个端口。当浏览器拿到了 HTTP 的报文。发现返回“200”,一切正常,于是就从正文中将 HTML 拿出来。HTML 是一个标准的网页格式。浏览器只要根据这个格式,展示出一个绚丽多彩的网页。这就是一个正常的 HTTP 请求和返回的完整过程。

HTTP 2.0

当然 HTTP 协议也在不断的进化过程中,在 HTTP1.1 基础上便有了 HTTP 2.0。HTTP 1.1 在应用层以纯文本的形式进行通信。每次通信都要带完整的 HTTP 的头,而且不考虑 pipeline 模式的话,每次的过程总是像上面描述的那样一去一回。这样在实时性、并发性上都存在问题。为了解决这些问题,HTTP 2.0 会对 HTTP 的头进行一定的压缩,将原来每次都要携带的大量 key value 在两端建立一个索引表,对相同的头只发送索引表中的索引。另外,HTTP 2.0 协议将一个 TCP 的连接中,切分成多个流,每个流都有自己的 ID,而且流可以是客户端发往服务端,也可以是服务端发往客户端。它其实只是一个虚拟的通道。流是有优先级的。

HTTP 2.0 还将所有的传输信息分割为更小的消息和帧,并对它们采用二进制格式编码。常见的帧有 Header 帧,用于传输 Header 内容,并且会开启一个新的流。再就是 Data 帧,用来传输正文实体。多个 Data 帧属于同一个流。通过这两种机制,HTTP 2.0 的客户端可以将多个请求分到不同的流中,然后将请求内容拆成帧,进行二进制传输。这些帧可以打散乱序发送, 然后根据每个帧首部的流标识符重新组装,并且可以根据优先级,决定优先处理哪个流的数据。我们来举一个例子。

假设我们的一个页面要发送三个独立的请求,一个获取 css,一个获取 js,一个获取图片 jpg。如果使用 HTTP 1.1 就是串行的,但是如果使用 HTTP 2.0,就可以在一个连接里,客户端和服务端都可以同时发送多个请求或回应,而且不用按照顺序一对一对应。

HTTP 2.0 其实是将三个请求变成三个流,将数据分成帧,乱序发送到一个 TCP 连接中。

HTTP 2.0 成功解决了 HTTP 1.1 的队首阻塞问题,同时,也不需要通过 HTTP 1.x 的 pipeline 机制用多条 TCP 连接来实现并行请求与响应;减少了 TCP 连接数对服务器性能的影响,同时将页面的多个数据 css、js、 jpg 等通过一个数据链接进行传输,能够加快页面组件的传输速度。

QUIC 协议的“城会玩”

HTTP 2.0 虽然大大增加了并发性,但还是有问题的。因为 HTTP 2.0 也是基于 TCP 协议的,TCP 协议在处理包时是有严格顺序的。当其中一个数据包遇到问题,TCP 连接需要等待这个包完成重传之后才能继续进行。虽然 HTTP 2.0 通过多个 stream,使得逻辑上一个 TCP 连接上的并行内容,进行多路数据的传输,然而这中间并没有关联的数据。一前一后,前面 stream 2 的帧没有收到,后面 stream 1 的帧也会因此阻塞。于是,就又到了从 TCP 切换到 UDP,进行“城会玩”的时候了。这就是 Google 的 QUIC 协议,接下来我们来看它是如何“城会玩”的。

机制一:自定义连接机制

我们都知道,一条 TCP 连接是由四元组标识的,分别是源 IP、源端口、目的 IP、目的端口。一旦一个元素发生变化时,就需要断开重连,重新连接。在移动互联情况下,当手机信号不稳定或者在 WIFI 和 移动网络切换时,都会导致重连,从而进行再次的三次握手,导致一定的时延。这在 TCP 是没有办法的,但是基于 UDP,就可以在 QUIC 自己的逻辑里面维护连接的机制,不再以四元组标识,而是以一个 64 位的随机数作为 ID 来标识,而且 UDP 是无连接的,所以当 IP 或者端口变化的时候,只要 ID 不变,就不需要重新建立连接。

机制二:自定义重传机制

前面我们讲过,TCP 为了保证可靠性,通过使用序号和应答机制,来解决顺序问题和丢包问题。任何一个序号的包发过去,都要在一定的时间内得到应答,否则一旦超时,就会重发这个序号的包。那怎么样才算超时呢?还记得我们提过的自适应重传算法吗?这个超时是通过采样往返时间 RTT 不断调整的。其实,在 TCP 里面超时的采样存在不准确的问题。例如,发送一个包,序号为 100,发现没有返回,于是再发送一个 100,过一阵返回一个 ACK101。这个时候客户端知道这个包肯定收到了,但是往返时间是多少呢?是 ACK 到达的时间减去后一个 100 发送的时间,还是减去前一个 100 发送的时间呢?事实是,第一种算法把时间算短了,第二种算法把时间算长了。QUIC 也有个序列号,是递增的。任何一个序列号的包只发送一次,下次就要加一了。例如,发送一个包,序号是 100,发现没有返回;再次发送的时候,序号就是 101 了;如果返回的 ACK 100,就是对第一个包的响应。如果返回 ACK 101 就是对第二个包的响应,RTT 计算相对准确。但是这里有一个问题,就是怎么知道包 100 和包 101 发送的是同样的内容呢?QUIC 定义了一个 offset 概念。QUIC 既然是面向连接的,也就像 TCP 一样,是一个数据流,发送的数据在这个数据流里面有个偏移量 offset,可以通过 offset 查看数据发送到了哪里,这样只要这个 offset 的包没有来,就要重发;如果来了,按照 offset 拼接,还是能够拼成一个流。

机制三:无阻塞的多路复

用有了自定义的连接和重传机制,我们就可以解决上面 HTTP 2.0 的多路复用问题。同 HTTP 2.0 一样,同一条 QUIC 连接上可以创建多个 stream,来发送多个 HTTP 请求。但是,QUIC 是基于 UDP 的,一个连接上的多个 stream 之间没有依赖。这样,假如 stream2 丢了一个 UDP 包,后面跟着 stream3 的一个 UDP 包,虽然 stream2 的那个包需要重传,但是 stream3 的包无需等待,就可以发给用户。

机制四:自定义流量控制

TCP 的流量控制是通过滑动窗口协议。QUIC 的流量控制也是通过 window_update,来告诉对端它可以接受的字节数。但是 QUIC 的窗口是适应自己的多路复用机制的,不但在一个连接上控制窗口,还在一个连接中的每个 stream 控制窗口。还记得吗?在 TCP 协议中,接收端的窗口的起始点是下一个要接收并且 ACK 的包,即便后来的包都到了,放在缓存里面,窗口也不能右移,因为 TCP 的 ACK 机制是基于序列号的累计应答,一旦 ACK 了一个序列号,就说明前面的都到了,所以只要前面的没到,后面的到了也不能 ACK,就会导致后面的到了,也有可能超时重传,浪费带宽。QUIC 的 ACK 是基于 offset 的,每个 offset 的包来了,进了缓存,就可以应答,应答后就不会重发,中间的空档会等待到来或者重发即可,而窗口的起始位置为当前收到的最大 offset,从这个 offset 到当前的 stream 所能容纳的最大缓存,是真正的窗口大小。显然,这样更加准确。

另外,还有整个连接的窗口,需要对于所有的 stream 的窗口做一个统计。

HTTPS协议:点外卖的过程原来这么复杂

用 HTTP 协议,看个新闻还没有问题,但是换到更加严肃的场景中,就存在很多的安全风险。例如,你要下单做一次支付,如果还是使用普通的 HTTP 协议,那你很可能会被黑客盯上。你发送一个请求,说我要点个外卖,但是这个网络包被截获了,于是在服务器回复你之前,黑客先假装自己就是外卖网站,然后给你回复一个假的消息说:“好啊好啊,来来来,银行卡号、密码拿来。”如果这时候你真把银行卡密码发给它,那你就真的上套了。那怎么解决这个问题呢?当然一般的思路就是加密。加密分为两种方式一种是对称加密,一种是非对称加密。在对称加密算法中,加密和解密使用的密钥是相同的。也就是说,加密和解密使用的是同一个密钥。因此,对称加密算法要保证安全性的话,密钥要做好保密。只能让使用的人知道,不能对外公开。在非对称加密算法中,加密使用的密钥和解密使用的密钥是不相同的。一把是作为公开的公钥,另一把是作为谁都不能给的私钥。公钥加密的信息,只有私钥才能解密。私钥加密的信息,只有公钥才能解密。因为对称加密算法相比非对称加密算法来说,效率要高得多,性能也好,所以交互的场景下多用对称加密。

对称加密

假设你和外卖网站约定了一个密钥,你发送请求的时候用这个密钥进行加密,外卖网站用同样的密钥进行解密。这样就算中间的黑客截获了你的请求,但是它没有密钥,还是破解不了。这看起来很完美,但是中间有个问题,你们两个怎么来约定这个密钥呢?如果这个密钥在互联网上传输,也是很有可能让黑客截获的。黑客一旦截获这个秘钥,它可以佯作不知,静静地等着你们两个交互。这时候你们之间互通的任何消息,它都能截获并且查看,就等你把银行卡账号和密码发出来。我们在谍战剧里面经常看到这样的场景,就是特工破译的密码会有个密码本,截获无线电台,通过密码本就能将原文破解出来。怎么把密码本给对方呢?只能通过线下传输。比如,你和外卖网站偷偷约定时间地点,它给你一个纸条,上面写着你们两个的密钥,然后说以后就用这个密钥在互联网上定外卖了。当然你们接头的时候,也会先约定一个口号,什么“天王盖地虎”之类的,口号对上了,才能把纸条给它。但是,“天王盖地虎”同样也是对称加密密钥,同样存在如何把“天王盖地虎”约定成口号的问题。而且在谍战剧中一对一接头可能还可以,在互联网应用中,客户太多,这样是不行的。

非对称加密

所以,只要是对称加密,就会永远在这个死循环里出不来,这个时候,就需要非对称加密介入进来。非对称加密的私钥放在外卖网站这里,不会在互联网上传输,这样就能保证这个密钥的私密性。但是,对应私钥的公钥,是可以在互联网上随意传播的,只要外卖网站把这个公钥给你,你们就可以愉快地互通了。比如说你用公钥加密,说“我要定外卖”,黑客在中间就算截获了这个报文,因为它没有私钥也是解不开的,所以这个报文可以顺利到达外卖网站,外卖网站用私钥把这个报文解出来,然后回复,“那给我银行卡和支付密码吧”。先别太乐观,这里还是有问题的。回复的这句话,是外卖网站拿私钥加密的,互联网上人人都可以把它打开,当然包括黑客。那外卖网站可以拿公钥加密吗?当然不能,因为它自己的私钥只有它自己知道,谁也解不开。另外,这个过程还有一个问题,黑客也可以模拟发送“我要定外卖”这个过程的,因为它也有外卖网站的公钥。为了解决这个问题,看来一对公钥私钥是不够的,客户端也需要有自己的公钥和私钥,并且客户端要把自己的公钥,给外卖网站。这样,客户端给外卖网站发送的时候,用外卖网站的公钥加密。而外卖网站给客户端发送消息的时候,使用客户端的公钥。这样就算有黑客企图模拟客户端获取一些信息,或者半路截获回复信息,但是由于它没有私钥,这些信息它还是打不开。

数字证书

不对称加密也会有同样的问题,如何将不对称加密的公钥给对方呢?一种是放在一个公网的地址上,让对方下载;另一种就是在建立连接的时候,传给对方。这两种方法有相同的问题,那就是,作为一个普通网民,你怎么鉴别别人给你的公钥是对的。会不会有人冒充外卖网站,发给你一个它的公钥。接下来,你和它所有的互通,看起来都是没有任何问题的。毕竟每个人都可以创建自己的公钥和私钥。例如,我自己搭建了一个网站 cliu8site,可以通过这个命令先创建私钥。

1 openssl genrsa -out cliu8siteprivate.key 1024

然后,再根据这个私钥,创建对应的公钥。

1 openssl rsa -in cliu8siteprivate.key -pubout -outcliu8sitepublic.pem

这个时候就需要权威部门的介入了,就像每个人都可以打印自己的简历,说自己是谁,但是有公安局盖章的,就只有户口本,这个才能证明你是你。这个由权威部门颁发的称为证书(Certificate)。证书里面有什么呢?当然应该有公钥,这是最重要的;还有证书的所有者,就像户口本上有你的姓名和身份证号,说明这个户口本是你的;另外还有证书的发布机构和证书的有效期,这个有点像身份证上的机构是哪个区公安局,有效期到多少年。这个证书是怎么生成的呢?会不会有人假冒权威机构颁发证书呢?就像有假身份证、假户口本一样。生成证书需要发起一个证书请求,然后将这个请求发给一个权威机构去认证,这个权威机构我们称为 CA( Certificate Authority)。证书请求可以通过这个命令生成。

1 openssl req -key cliu8siteprivate.key -new -out cliu8sitecertificate.req

将这个请求发给权威机构,权威机构会给这个证书卡一个章,我们称为签名算法。问题又来了,那怎么签名才能保证是真的权威机构签名的呢?当然只有用只掌握在权威机构手里的东西签名了才行,这就是 CA 的私钥。签名算法大概是这样工作的:一般是对信息做一个 Hash 计算,得到一个 Hash 值,这个过程是不可逆的,也就是说无法通过 Hash 值得出原来的信息内容。在把信息发送出去时,把这个 Hash 值加密后,作为一个签名和信息一起发出去。权威机构给证书签名的命令是这样的。

1 openssl x509 -req -in cliu8sitecertificate.req -CA cacertificate.pem -CAkey caprivate.key -out cliu8sitecertificate.pem

这个命令会返回 Signature ok,而 cliu8sitecertificate.pem 就是签过名的证书。CA 用自己的私钥给外卖网站的公钥签名,就相当于给外卖网站背书,形成了外卖网站的证书。我们来查看这个证书的内容。

1 openssl x509 -in cliu8sitecertificate.pem -noout -text 

这里面有个 Issuer,也即证书是谁颁发的;Subject,就是证书颁发给谁;Validity 是证书期限;Public-key 是公钥内容;Signature Algorithm 是签名算法。这下好了,你不会从外卖网站上得到一个公钥,而是会得到一个证书,这个证书有个发布机构 CA,你只要得到这个发布机构 CA 的公钥,去解密外卖网站证书的签名,如果解密成功了,Hash 也对的上,就说明这个外卖网站的公钥没有啥问题。你有没有发现,又有新问题了。要想验证证书,需要 CA 的公钥,问题是,你怎么确定 CA 的公钥就是对的呢?所以,CA 的公钥也需要更牛的 CA 给它签名,然后形成 CA 的证书。要想知道某个 CA 的证书是否可靠,要看 CA 的上级证书的公钥,能不能解开这个 CA 的签名。就像你不相信区公安局,可以打电话问市公安局,让市公安局确认区公安局的合法性。这样层层上去,直到全球皆知的几个著名大 CA,称为 root CA,做最后的背书。通过这种层层授信背书的方式,从而保证了非对称加密模式的正常运转。除此之外,还有一种证书,称为 Self-Signed Certificate,就是自己给自己签名。这个给人一种“我就是我,你爱信不信”的感觉。这里我就不多说了。

HTTPS 的工作模式

我们可以知道,非对称加密在性能上不如对称加密,那是否能将两者结合起来呢?例如,公钥私钥主要用于传输对称加密的秘钥,而真正的双方大数据量的通信都是通过对称加密进行的。当然是可以的。这就是 HTTPS 协议的总体思路。

当你登录一个外卖网站的时候,由于是 HTTPS,客户端会发送 Client Hello 消息到服务器,以明文传输 TLS 版本信息、加密套件候选列表、压缩算法候选列表等信息。另外,还会有一个随机数,在协商对称密钥的时候使用。这就类似在说:“您好,我想定外卖,但你要保密我吃的是什么。这是我的加密套路,再给你个随机数,你留着。”然后,外卖网站返回 Server Hello 消息, 告诉客户端,服务器选择使用的协议版本、加密套件、压缩算法等,还有一个随机数,用于后续的密钥协商。这就类似在说:“您好,保密没问题,你的加密套路还挺多,咱们就按套路 2 来吧,我这里也有个随机数,你也留着。”然后,外卖网站会给你一个服务器端的证书,然后说:“Server Hello Done,我这里就这些信息了。”你当然不相信这个证书,于是你从自己信任的 CA 仓库中,拿 CA 的证书里面的公钥去解密外卖网站的证书。如果能够成功,则说明外卖网站是可信的。这个过程中,你可能会不断往上追溯 CA、CA 的 CA、CA 的 CA 的 CA,反正直到一个授信的 CA,就可以了。证书验证完毕之后,觉得这个外卖网站可信,于是客户端计算产生随机数字 Pre-master,发送 Client Key Exchange,用证书中的公钥加密,再发送给服务器,服务器可以通过私钥解密出来。

到目前为止,无论是客户端还是服务器,都有了三个随机数,分别是:自己的、对端的,以及刚生成的 Pre-Master 随机数。通过这三个随机数,可以在客户端和服务器产生相同的对称密钥。有了对称密钥,客户端就可以说:“Change Cipher Spec,咱们以后都采用协商的通信密钥和加密算法进行加密通信了。”然后发送一个 Encrypted Handshake Message,将已经商定好的参数等,采用协商密钥进行加密,发送给服务器用于数据与握手验证。同样,服务器也可以发送 Change Cipher Spec,说:“没问题,咱们以后都采用协商的通信密钥和加密算法进行加密通信了”,并且也发送 Encrypted Handshake Message 的消息试试。当双方握手结束之后,就可以通过对称密钥进行加密传输了。这个过程除了加密解密之外,其他的过程和 HTTP 是一样的,过程也非常复杂。上面的过程只包含了 HTTPS 的单向认证,也即客户端验证服务端的证书,是大部分的场景,也可以在更加严格安全要求的情况下,启用双向认证,双方互相验证证书。

重放与篡改

其实,这里还有一些没有解决的问题,例如重放和篡改的问题。没错,有了加密和解密,黑客截获了包也打不开了,但是它可以发送 N 次。这个往往通过 Timestamp 和 Nonce 随机数联合起来,然后做一个不可逆的签名来保证。Nonce 随机数保证唯一,或者 Timestamp 和 Nonce 合起来保证唯一,同样的,请求只接受一次,于是服务器多次收到相同的 Timestamp 和 Nonce,则视为无效即可。如果有人想篡改 Timestamp 和 Nonce,还有签名保证不可篡改性,如果改了用签名算法解出来,就对不上了,可以丢弃了。

总结

QUIC:http://www.52im.net/thread-1309-1-1.html

以后关于数据中台系列的总结大部分来自Geek Time的课件,大家可以自行关键字搜索。

网络协议学习笔记(六)http和https的更多相关文章

  1. 网络协议学习笔记(七)流媒体协议和P2P协议

    概述 上一篇讲解了http和https的协议的相关的知识,现在我们谈一下流媒体协议和P2P协议. 流媒体协议:如何在直播里看到美女帅哥 最近直播比较火,很多人都喜欢看直播,那一个直播系统里面都有哪些组 ...

  2. 网络协议学习笔记(二)物理层到MAC层,交换机和VLAN,ICMP与ping原理

    概述 之前网络学习笔记主要讲解了IP的诞生,或者说整个操作系统的诞生,一旦有了IP,就可以在网络的环境里和其他的机器展开沟通了.现在开始给大家讲解关于网络底层的相关知识. 从物理层到MAC层:如何在宿 ...

  3. 网络协议学习笔记(九)CDN和数据中心

    概述 上一篇给大家介绍了DNS协议和HttpDns协议,现在给大家介绍一下CDN和数据中心相关的知识. CDN:你去小卖部取过快递么? 如果你去电商网站下单买个东西,这个东西一定要从电商总部的中心仓库 ...

  4. 网络协议学习笔记(四)传输层的UDP和TCP

    概述 传输层里比较重要的两个协议,一个是 TCP,一个是 UDP.对于不从事底层开发的人员来讲,或者对于开发应用的人来讲,最常用的就是这两个协议.由于面试的时候,这两个协议经常会被放在一起问,因而我在 ...

  5. iSCSI网络协议.学习笔记

    Internet SCSI(iSCSI)是一种网络协议,使用TCP/IP网络来传输SCSI协议.它是代替FC(Fibre Channel-based,光纤通道) SAN的很好选择.你可以在Linux下 ...

  6. 网络协议学习笔记(八)DNS协议和HttpDNS协议

    概述 上一篇主要讲解了流媒体协议和p2p协议,现在我给大家讲解一下关于DNS和HttpDNS的相关知识. DNS协议:网络世界的地址簿 在网络世界,也是这样的.你肯定记得住网站的名称,但是很难记住网站 ...

  7. 网络协议学习笔记(五)套接字Socket

    概述 前面学习网络知识的时候写过一篇关于套接字的随笔见<JAVA SOCKET 详解>,现在本人正在系统的学习网络知识,现在除了温故知新之外,在详细的学习记录一下套接字的知识. Socke ...

  8. Spring Boot 学习笔记(六) 整合 RESTful 参数传递

    Spring Boot 学习笔记 源码地址 Spring Boot 学习笔记(一) hello world Spring Boot 学习笔记(二) 整合 log4j2 Spring Boot 学习笔记 ...

  9. java之jvm学习笔记六-十二(实践写自己的安全管理器)(jar包的代码认证和签名) (实践对jar包的代码签名) (策略文件)(策略和保护域) (访问控制器) (访问控制器的栈校验机制) (jvm基本结构)

    java之jvm学习笔记六(实践写自己的安全管理器) 安全管理器SecurityManager里设计的内容实在是非常的庞大,它的核心方法就是checkPerssiom这个方法里又调用 AccessCo ...

随机推荐

  1. greeting-150

    拿到程序例行检查,可以看出程序是32位的程序 将程序放入ida中进入主函数查看 但是我们将程序运行一次后发现程序还运行了nao的程序 说明程序在中间还引用了nao函数,通过代码审计我们可以很直接的看到 ...

  2. CF1082A Vasya and Book 题解

    Content 给定 \(T\) 组数据,每组数据给出四个整数 \(n,x,y,d\).小 V 有一本 \(n\) 页的书,每次可以恰好翻 \(d\) 页,求从第 \(x\) 页恰好翻到第 \(y\) ...

  3. 使用iframe实现上下窗口结构及登录页全窗口展示Demo

    iframe.html 首页 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> < ...

  4. JAVA验证手机号码是否正确

    PhoneUtils.java package com.common.util; import java.util.regex.Matcher; import java.util.regex.Patt ...

  5. IDEA报错 Unable to open debugger port (127.0.0.1:63342): java.net.BindException "Address already in use

    Unable to open debugger port (127.0.0.1:63342): java.net.BindException  "Address already in use ...

  6. qt5之使用QtXlsxWriter库

    note Qt version: 5.12 platform: os x 10.15 本文将介绍直接使用QtXlsxWriter源码 准备 下载QtXlsxWriter 使用Qt Creator 创建 ...

  7. 【LeetCode】448. Find All Numbers Disappeared in an Array 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 方法一:暴力求解 方法二:原地变负做标记 方法三:使用set ...

  8. 【LeetCode】326. Power of Three 解题报告(Java & Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 循环 递归 取对数 判断是不是最大3的倍数的因子 日 ...

  9. 【LeetCode】173. Binary Search Tree Iterator 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 保存全部节点 只保留左节点 日期 题目地址:http ...

  10. Bean拷贝工具

    Apache BeanUtils Spring BeanUtils cglib BeanCopier Hutool BeanUtil Mapstruct Dozer 1.Apache  BeanUti ...