向Relay添加算子

为了在Relay IR中使用TVM算子,需要在Relay中注册算子,以确保将其集成到Relay的类型系统中。

注册算子需要三个步骤:

  • 使用RELAY_REGISTER_OPC ++中的宏注册算子的Arity和类型信息
  • 定义一个C ++函数为算子生成一个调用节点,并为该函数注册一个Python API挂钩
  • 将上述Python API挂钩包装在更整洁的界面中

该文件src/relay/op/tensor/binary.cc提供了前两个步骤的python/tvm/relay/op/tensor.py示例,同时提供了后两个步骤的示例。

注册算子

TVM已经具有算子注册表,如果没有其它类型信息,Relay无法正确合并TVM算子。

为了在注册算子时具有更大的灵活性,并在Relay中表达类型时,提高了表达性和粒度,使用输入和输出类型之间的关系来对算子进行类型化。这些关系表示为接受输入类型和输出类型的列表(这些类型中的任何一个都不完整),返回满足该关系的输入和输出类型的列表的函数。本质上,算子的关系除了计算输出类型外,还可以强制执行所有必要的键入规则(即,通过检查输入类型)。

例如,参阅src/relay/op/type_relations.h及其实现。例如,BroadcastRel接受两个输入类型和一个输出类型,都是具有相同基础数据类型的张量类型,最后确保输出类型的形状是输入类型的形状的广播。

type_relations.h 如果现有类型未捕获所需算子的行为,则可能有必要添加另一种类型关系。

使用RELAY_REGISTER_OPC ++中的宏,开发人员可以在Relay中指定有关算子的以下信息:

  • Arity(参数个数)
  • 位置参数的名称和说明
  • 支持级别(1表示内部固有;较高的数字表示积分较少或不受外部支持的算子)
  • 算子的类型关系

下面的示例来自binary.cc张量,并将其用于张量广播:

RELAY_REGISTER_OP("add")

.set_num_inputs(2)

.add_argument("lhs", "Tensor", "The left hand side tensor.")

.add_argument("rhs", "Tensor", "The right hand side tensor.")

.set_support_level(1)

.add_type_rel("Broadcast", BroadcastRel);

创建调用节点

此步骤仅需要简单地编写一个将参数带给算子的函数(如Relay表达式),然后将调用节点返回给算子(即,应将其放置在Relay AST中的节点,该AST是要向算子进行调用的位置)。

目前不支持调用属性和类型参数(最后两个字段),足以用于Op::Get从算子注册表中获取算子信息,并将参数传递给调用节点,如下所示。

TVM_REGISTER_GLOBAL("relay.op._make.add")

.set_body_typed<Expr(Expr, Expr)>([](Expr lhs, Expr rhs) {

static const Op& op = Op::Get("add");

return Call(op, {lhs, rhs}, Attrs(), {});

});

包括Python API挂钩

在Relay中通常是约定,通过导出的函数TVM_REGISTER_GLOBAL应该包装在单独的Python函数中,而不是在Python中直接调用。对于产生对算子的调用的函数,捆绑起来可能很方便,其中python/tvm/relay/op/tensor.py,都提供了张量上的元素算子。例如,以下是上一节中的add函数在Python中的显示方式:

def add(lhs, rhs):

"""Elementwise addition.

    Parameters

    ----------

    lhs : relay.Expr

        The left hand side input data

    rhs : relay.Expr

        The right hand side input data

    Returns

    -------

    result : relay.Expr

        The computed result.

    """

return _make.add(lhs, rhs)

这些Python库也可能是向算子提供更简单接口的好机会。例如,该 concat算子被注册为仅接受一个算子,即一个具有要连接的张量的元组,Python库将这些张量作为参数,组合成一个元组,然后生成调用节点:

def concat(*args):

"""Concatenate the input tensors along the zero axis.

    Parameters

    ----------

    args: list of Tensor

    Returns

    -------

    tensor: The concatenated tensor.

    """

tup = Tuple(list(args))

return _make.concat(tup)

梯度算子

梯度算子对于在Relay中编写可区分的程序很重要。尽管Relay的autodiff算法可以区分一流的语言结构,算子是不透明的。由于Relay无法调查实现,必须提供明确的区分规则。

Python和C ++均可用于编写梯度算子,将示例重点放在Python上,因为更常用。

在Python中添加渐变

可以找到Python梯度算子的集合 python/tvm/relay/op/_tensor_grad.py。将通过两个有代表性的示例:sigmoid和multiply。

@register_gradient("sigmoid")

def sigmoid_grad(orig, grad):

"""Returns [grad * sigmoid(x) * (1 - sigmoid(x))]."""

return [grad * orig * (ones_like(orig) - orig)]

这里的输入是原始算子orig和grad要累加到的渐变。返回的是一个列表,其中第i个索引处的元素是算子相对于算子第i个输入的派生。通常,渐变将返回一个列表,其中包含与基本算子输入相同数量的元素。

在进一步分析这个定义之前,应该回想一下S型函数的导数: ∂σ∂x=σ(x)(1−σ(x))∂σ∂x=σ(x)(1−σ(x))。上面的定义看起来与数学定义相似,有一个重要的补充,将在下面进行描述。

该术语直接与导数匹配,因为这是S型函数,不仅对如何计算此函数的梯度感兴趣。有兴趣将此梯度与其它梯度组成,可以在整个程序中累积该梯度。这是该术语出现的地方。指定到目前为止如何用梯度组成导数。orig * (ones_like(orig) - orig)origgradgrad * orig * (ones_like(orig) - orig)grad

来看multiply一个更有趣的示例:

@register_gradient("multiply")

def multiply_grad(orig, grad):

"""Returns [grad * y, grad * x]"""

x, y = orig.args

return [collapse_sum_like(grad * y, x),

collapse_sum_like(grad * x, y)]

在此示例中,返回列表中有两个元素, multiply是一个二进制算子。如果f(x,y)=xyf(x,y)=xy,偏导数是 ∂f∂x=y∂f∂x=y 和 ∂f∂y=x∂f∂y=x。

有一个必需的步骤,因为广播具有语义,multiply不需要。可能与输入的形状不匹配,习惯于获取术语的内容,并使形状与要区分的输入的形状相匹配。sigmoidmultiplygradcollapse_sum_likegrad * <var>

在C ++中添加渐变

在C ++中添加渐变类似于在Python中添加渐变,注册的界面略有不同。

确保src/relay/pass/pattern_utils.h包含其中。提供了用于在Relay AST中创建节点的辅助功能。然后,以类似于Python示例的方式定义渐变:

tvm::Array<Expr> MultiplyGrad(const Expr& orig_call, const Expr& output_grad) {

const Call& call = orig_call.Downcast<Call>();

return { CollapseSumLike(Multiply(output_grad, call.args[1]), call.args[0]),

CollapseSumLike(Multiply(output_grad, call.args[0]), call.args[1]) };

}

在C ++中,不能使用与Python中相同的算子重载,并且需要向下转换,实现更为冗长。即使这样,仍可以轻松地验证此定义,是否与Python中的先前示例相同。

代替使用Python渲染,需要set_attr在基本算子注册的末尾添加对“ FPrimalGradient”的调用,以注册渐变。

RELAY_REGISTER_OP("multiply")

// ...

// Set other attributes

// ...

.set_attr<FPrimalGradient>("FPrimalGradient", MultiplyGrad);

总结

  • TVM算子可以使用表示适当类型信息的关系在中继中注册。
  • 在中继中使用算子需要一个函数来为算子生成调用节点。
  • 最好有一个简单的Python库来生成调用节点。

向Relay添加算子的更多相关文章

  1. 【推理引擎】如何在 ONNXRuntime 中添加新的算子

    如果模型中有些算子不被ONNX算子库支持,我们就需要利用ONNXRuntime提供的API手动添加新算子.在官方文档中已经对如何添加定制算子进行了介绍(https://onnxruntime.ai/d ...

  2. Sentry 企业级数据安全解决方案 - Relay 入门

    内容整理自官方开发文档 Sentry Relay 通过提供作为应用程序和 sentry.io 之间中间层的独立服务来提供企业级数据安全性. Relay 专门设计用于: 在将个人身份信息 (PII) 发 ...

  3. Tensorflow源码解析1 -- 内核架构和源码结构

    1 主流深度学习框架对比 当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层.比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android ...

  4. 浅谈 PHP Yaf 开启session之后对响应头的影响

    当使用PHP Yaf框架,如果某个 Action 在返回响应(输出页面或者返回json)之前,启用了session,那么将会在响应头里面加上强制不缓存的响应头,也就是如下的三个响应头. Expires ...

  5. PaddlePaddle实现线性回归

    在本次实验中我们将使用PaddlePaddle来搭建一个简单的线性回归模型,并利用这一模型预测你的储蓄(在某地区)可以购买多大面积的房子.并且在学习模型搭建的过程中,了解到机器学习的若干重要概念,掌握 ...

  6. tensorflow源码分析

    前言: 一般来说,如果安装tensorflow主要目的是为了调试些小程序的话,只要下载相应的包,然后,直接使用pip install tensorflow即可. 但有时我们需要将Tensorflow的 ...

  7. TensorFlow+TVM优化NMT神经机器翻译

    TensorFlow+TVM优化NMT神经机器翻译 背景 神经机器翻译(NMT)是一种自动化的端到端方法,具有克服传统基于短语的翻译系统中的弱点的潜力.本文为全球电子商务部署NMT服务. 目前,将Tr ...

  8. 昇思MindSpore全场景AI框架 1.6版本,更高的开发效率,更好地服务开发者

    摘要:本文带大家快速浏览昇思MindSpore全场景AI框架1.6版本的关键特性. 全新的昇思MindSpore全场景AI框架1.6版本已发布,此版本中昇思MindSpore全场景AI框架易用性不断改 ...

  9. Relay外部库使用

    Relay外部库使用 本文介绍如何将cuDNN或cuBLAS等外部库与Relay一起使用. Relay内部使用TVM生成目标特定的代码.例如,使用cuda后端,TVM为用户提供的网络中的所有层生成cu ...

随机推荐

  1. 【SpringBoot】SpringBoot2.x整合Shiro(一)

    一:什么是ACL和RBAC: ACL: Access Control List 访问控制列表 以前盛行的一种权限设计,它的核心在于用户直接和权限挂钩 优点:简单易用,开发便捷 缺点:用户和权限直接挂钩 ...

  2. drozer源码学习:app

    源码下载:https://github.com/mwrlabs/drozer:模块的源码位于src.drozer.modules,根据模块名来划分文件夹: app.auxiliary.exploit. ...

  3. Windows核心编程 第26章 窗口消 息

    窗 口 消 息 Wi n d o w s允许一个进程至多建立10 000个不同类型的用户对象(User object):图符.光标.窗口类.菜单.加速键表等等.当一个线程调用一个函数来建立某个对象时, ...

  4. SEO优化技术的简介

    严格来讲,seo技术没有所谓的严格的黑帽与白帽之分.即使是正常的301重定向,在某些情况下也能作用于黑帽seo技术.我们能判定一个人是真正的好人还是坏人么?答案是否定的.之所以解密所谓的黑帽seo,是 ...

  5. 文件描述符fd

    java 后台运行程序命令 nohup java -jar babyshark-0.0.1-SNAPSHOT.jar > log.file 2>&1 & 命令解释:后台启动 ...

  6. Github镜像网站

    https://hub.fastgit.org

  7. jquery中定义数组并给数组赋值后转为json格式为[]问题的解决

    一.问题描述:jquery定义一个空数组,并赋值,结果转为json格式后打印值为空 我原本是这样写的,但是show_data值一直为[] var export_data = [];export_dat ...

  8. 矩阵旋转-Eigen应用(QTCreator编辑器)

    * { font-family: "Tibetan Machine Uni", "sans-serif", STFangSong; outline: none ...

  9. 老Python带你从浅入深探究Tuple

    元组 Python中的元组容器序列(tuple)与列表容器序列(list)具有极大的相似之处,因此也常被称为不可变的列表. 但是两者之间也有很多的差距,元组侧重于数据的展示,而列表侧重于数据的存储与操 ...

  10. Python中的pip安装与使用

    配置python的环境变量 我们在我的电脑右击->属性->高级系统设置看到环境变量 然后我们点击环境变量,找到系统变量中的Path变量然后双击他新建一项,值为我们安装的python的pyt ...