DeepLabV3+语义分割实战
DeepLabV3+语义分割实战
语义分割是计算机视觉的一项重要任务,本文使用Jittor
框架实现了DeepLabV3+
语义分割
模型。
DeepLabV3+论文:https://arxiv.org/pdf/1802.02611.pdf
完整代码:https://github.com/Jittor/deeplab-jittor
1. 数据集
1.1 数据准备
VOC2012数据集是目标检测、语义分割等任务常用的数据集之一, 本文使用VOC数据集的2012 trainaug (train + sbd set)
作为训练集,2012 val set
作为测试集。
VOC数据集中的物体共包括20
个前景类别:'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'
和背景类别
最终数据集的文件组织如下。
#
文件组织
根目录
|----voc_aug
| |----datalist
| | |----train.txt
| | |----val.txt
| |----images
| |----annotations
1.2 数据加载
使用jittor.dataset.dataset
的基类Dataset
可以构造自己的数据集,需要实现__init__
、__getitem__
、函数。
__init__
: 定义数据路径,这里的data_root
需设置为之前设定的voc_aug
,split
为train val test
之一,表示选择训练集、验证集还是测试集。同时需要调用self.set_attr
来指定数据集加载所需的参数batch_size
,total_len
、shuffle
。__getitem__
: 返回单个item
的数据。
importnumpy
as
np
importos
fromPIL
import
Image
importmatplotlib.pyplot
as
plt
fromjittor.dataset.dataset
import
Dataset,
dataset_root
importjittor
as
jt
importos
importos.path
as
osp
fromPIL
import
Image,
ImageOps,
ImageFilter
importnumpy
as
np
importscipy.io
as
sio
importrandom
deffetch(image_path,
label_path):
with
open(image_path,
'rb')
as
fp:
image
=
Image.open(fp).convert('RGB')
with
open(label_path,
'rb')
as
fp:
label
=
Image.open(fp).convert('P')
return
image,
label
defscale(image,
label):
SCALES
=
(0.5,
0.75,
1.0,
1.25,
1.5,
1.75,
2.0)
ratio
=
np.random.choice(SCALES)
w,h
=
image.size
nw
=
(int)(w*ratio)
nh
=
(int)(h*ratio)
image
=
image.resize((nw,
nh),
Image.BILINEAR)
label
=
label.resize((nw,
nh),
Image.NEAREST)
return
image,
label
defpad(image,
label):
w,h
=
image.size
crop_size
=
513
pad_h
=
max(crop_size
-
h,
0)
pad_w
=
max(crop_size
-
w,
0)
image
=
ImageOps.expand(image,
border=(0,
0,
pad_w,
pad_h),
fill=0)
label
=
ImageOps.expand(label,
border=(0,
0,
pad_w,
pad_h),
fill=255)
return
image,
label
defcrop(image,
label):
w,
h
=
image.size
crop_size
=
513
x1
=
random.randint(0,
w
-
crop_size)
y1
=
random.randint(0,
h
-
crop_size)
image
=
image.crop((x1,
y1,
x1
+
crop_size,
y1
+
crop_size))
label
=
label.crop((x1,
y1,
x1
+
crop_size,
y1
+
crop_size))
return
image,
label
defnormalize(image,
label):
mean
=
(0.485,
0.456,
0.40)
std
=
(0.229,
0.224,
0.225)
image
=
np.array(image).astype(np.float32)
label
=
np.array(label).astype(np.float32)
image
/=
255.0
image
-=
mean
image
/=
std
return
image,
label
defflip(image,
label):
if
random.random()
<
0.5:
image
=
image.transpose(Image.FLIP_LEFT_RIGHT)
label
=
label.transpose(Image.FLIP_LEFT_RIGHT)
return
image,
label
classBaseDataset(Dataset):
def
__init__(self,
data_root='/voc/',
split='train',
batch_size=1,
shuffle=False):
super().__init__()
''' total_len , batch_size, shuffle must be set '''
self.data_root
=
data_root
self.split
=
split
self.batch_size
=
batch_size
self.shuffle
=
shuffle
self.image_root
=
os.path.join(data_root,
'images')
self.label_root
=
os.path.join(data_root,
'annotations')
self.data_list_path
=
os.path.join(self.data_root,'/datalist/'
+
self.split
+
'.txt')
self.image_path
=
[]
self.label_path
=
[]
with
open(self.data_list_path,
"r")
as
f:
lines
=
f.read().splitlines()
for
idx,
line
in
enumerate(lines):
_img_path
=
os.path.join(self.image_root,
line
+
'.jpg')
_label_path
=
os.path.join(self.label_root,
line
+
'.png')
assert
os.path.isfile(_img_path)
assert
os.path.isfile(_label_path)
self.image_path.append(_img_path)
self.label_path.append(_label_path)
self.total_len
=
len(self.image_path)
# set_attr must be called to set batch size total len and shuffle like __len__ function in pytorch
self.set_attr(batch_size
=
self.batch_size,
total_len
=
self.total_len,
shuffle
=
self.shuffle)
# bs , total_len, shuffle
def
__getitem__(self,
image_id):
return
NotImplementedError
classTrainDataset(BaseDataset):
def
__init__(self,
data_root='/voc/',
split='train',
batch_size=1,
shuffle=False):
super(TrainDataset,
self).__init__(data_root,
split,
batch_size,
shuffle)
def
__getitem__(self,
image_id):
image_path
=
self.image_path[image_id]
label_path
=
self.label_path[image_id]
image,
label
=
fetch(image_path,
label_path)
image,
label
=
scale(image,
label)
image,
label
=
pad(image,
label)
image,
label
=
crop(image,
label)
image,
label
=
flip(image,
label)
image,
label
=
normalize(image,
label)
image
=
np.array(image).astype(np.float).transpose(2,
0,
1)
image
=
jt.array(image)
label
=
jt.array(np.array(label).astype(np.int))
return
image,
label
classValDataset(BaseDataset):
def
__init__(self,
data_root='/voc/',
split='train',
batch_size=1,
shuffle=False):
super(ValDataset,
self).__init__(data_root,
split,
batch_size,
shuffle)
def
__getitem__(self,
image_id):
image_path
=
self.image_path[image_id]
label_path
=
self.label_path[image_id]
image,
label
=
fetch(image_path,
label_path)
image,
label
=
normalize(image,
label)
image
=
np.array(image).astype(np.float).transpose(2,
0,
1)
image
=
jt.array(image)
label
=
jt.array(np.array(label).astype(np.int))
return
image,
label
2. 模型定义
上图为DeepLabV3+论文给出的网络架构图。本文采用ResNe
为backbone
。输入图像尺寸为513*513
。
整个网络可以分成 backbone
aspp
decoder
三个部分。
2.1 backbonb
这里使用最常见的ResNet
,作为backbone
并且在ResNet的最后两次使用空洞卷积来扩大感受野,其完整定义如下:
importjittor
as
jt
fromjittor
import
nn
fromjittor
import
Module
fromjittor
import
init
fromjittor.contrib
import
concat,
argmax_pool
importtime
classBottleneck(Module):
expansion
=
4
def
__init__(self,
inplanes,
planes,
stride=1,
dilation=1,
downsample=None):
super(Bottleneck,
self).__init__()
self.conv1
=
nn.Conv(inplanes,
planes,
kernel_size=1,
bias=False)
self.bn1
=
nn.BatchNorm(planes)
self.conv2
=
nn.Conv(planes,
planes,
kernel_size=3,
stride=stride,
dilation=dilation,
padding=dilation,
bias=False)
self.bn2
=
nn.BatchNorm(planes)
self.conv3
=
nn.Conv(planes,
planes
*
4,
kernel_size=1,
bias=False)
self.bn3
=
nn.BatchNorm(planes
*
4)
self.relu
=
nn.ReLU()
self.downsample
=
downsample
self.stride
=
stride
self.dilation
=
dilation
def
execute(self,
x):
residual
=
x
out
=
self.conv1(x)
out
=
self.bn1(out)
out
=
self.relu(out)
out
=
self.conv2(out)
out
=
self.bn2(out)
out
=
self.relu(out)
out
=
self.conv3(out)
out
=
self.bn3(out)
if
self.downsample
is
not
None:
residual
=
self.downsample(x)
out
+=
residual
out
=
self.relu(out)
return
out
classResNet(Module):
def
__init__(self,
block,
layers,
output_stride):
super(ResNet,
self).__init__()
self.inplanes
=
64
blocks
=
[1,
2,
4]
if
output_stride
==
16:
strides
=
[1,
2,
2,
1]
dilations
=
[1,
1,
1,
2]
elif
output_stride
==
8:
strides
=
[1,
2,
1,
1]
dilations
=
[1,
1,
2,
4]
else:
raise
NotImplementedError
# Modules
self.conv1
=
nn.Conv(3,
64,
kernel_size=7,
stride=2,
padding=3,
bias=False)
self.bn1
=
nn.BatchNorm(64)
self.relu
=
nn.ReLU()
# self.maxpool = nn.Pool(kernel_size=3, stride=2, padding=1)
self.layer1
=
self._make_layer(block,
64,
layers[0],
stride=strides[0],
dilation=dilations[0])
self.layer2
=
self._make_layer(block,
128,
layers[1],
stride=strides[1],
dilation=dilations[1])
self.layer3
=
self._make_layer(block,
256,
layers[2],
stride=strides[2],
dilation=dilations[2])
self.layer4
=
self._make_MG_unit(block,
512,
blocks=blocks,
stride=strides[3],
dilation=dilations[3])
def
_make_layer(self,
block,
planes,
blocks,
stride=1,
dilation=1):
downsample
=
None
if
stride
!=
1
or
self.inplanes
!=
planes
*
block.expansion:
downsample
=
nn.Sequential(
nn.Conv(self.inplanes,
planes
*
block.expansion,
kernel_size=1,
stride=stride,
bias=False),
nn.BatchNorm(planes
*
block.expansion),
)
layers
=
[]
layers.append(block(self.inplanes,
planes,
stride,
dilation,
downsample))
self.inplanes
=
planes
*
block.expansion
for
i
in
range(1,
blocks):
layers.append(block(self.inplanes,
planes,
dilation=dilation))
return
nn.Sequential(*layers)
def
_make_MG_unit(self,
block,
planes,
blocks,
stride=1,
dilation=1):
downsample
=
None
if
stride
!=
1
or
self.inplanes
!=
planes
*
block.expansion:
downsample
=
nn.Sequential(
nn.Conv(self.inplanes,
planes
*
block.expansion,
kernel_size=1,
stride=stride,
bias=False),
nn.BatchNorm(planes
*
block.expansion),
)
layers
=
[]
layers.append(block(self.inplanes,
planes,
stride,
dilation=blocks[0]*dilation,
downsample=downsample))
self.inplanes
=
planes
*
block.expansion
for
i
in
range(1,
len(blocks)):
layers.append(block(self.inplanes,
planes,
stride=1,
dilation=blocks[i]*dilation))
return
nn.Sequential(*layers)
def
execute(self,
input):
x
=
self.conv1(input)
x
=
self.bn1(x)
x
=
self.relu(x)
x
=
argmax_pool(x,
2,
2)
x
=
self.layer1(x)
low_level_feat
=
x
x
=
self.layer2(x)
x
=
self.layer3(x)
x
=
self.layer4(x)
return
x,
low_level_feat
defresnet50(output_stride):
model
=
ResNet(Bottleneck,
[3,4,6,3],
output_stride)
return
model
defresnet101(output_stride):
model
=
ResNet(Bottleneck,
[3,4,23,3],
output_stride)
return
model
2.2 ASPP
即使用不同尺寸的 dilation conv 对 backbone 得到的 feature map 进行卷积,最后 concat 并整合得到新的特征。
importjittor
as
jt
fromjittor
import
nn
fromjittor
import
Module
fromjittor
import
init
fromjittor.contrib
import
concat
classSingle_ASPPModule(Module):
def
__init__(self,
inplanes,
planes,
kernel_size,
padding,
dilation):
super(Single_ASPPModule,
self).__init__()
self.atrous_conv
=
nn.Conv(inplanes,
planes,
kernel_size=kernel_size,
stride=1,
padding=padding,
dilation=dilation,
bias=False)
self.bn
=
nn.BatchNorm(planes)
self.relu
=
nn.ReLU()
def
execute(self,
x):
x
=
self.atrous_conv(x)
x
=
self.bn(x)
x
=
self.relu(x)
return
x
classASPP(Module):
def
__init__(self,
output_stride):
super(ASPP,
self).__init__()
inplanes
=
2048
if
output_stride
==
16:
dilations
=
[1,
6,
12,
18]
elif
output_stride
==
8:
dilations
=
[1,
12,
24,
36]
else:
raise
NotImplementedError
self.aspp1
=
Single_ASPPModule(inplanes,
256,
1,
padding=0,
dilation=dilations[0])
self.aspp2
=
Single_ASPPModule(inplanes,
256,
3,
padding=dilations[1],
dilation=dilations[1])
self.aspp3
=
Single_ASPPModule(inplanes,
256,
3,
padding=dilations[2],
dilation=dilations[2])
self.aspp4
=
Single_ASPPModule(inplanes,
256,
3,
padding=dilations[3],
dilation=dilations[3])
self.global_avg_pool
=
nn.Sequential(GlobalPooling(),
nn.Conv(inplanes,
256,
1,
stride=1,
bias=False),
nn.BatchNorm(256),
nn.ReLU())
self.conv1
=
nn.Conv(1280,
256,
1,
bias=False)
self.bn1
=
nn.BatchNorm(256)
self.relu
=
nn.ReLU()
self.dropout
=
nn.Dropout(0.5)
def
execute(self,
x):
x1
=
self.aspp1(x)
x2
=
self.aspp2(x)
x3
=
self.aspp3(x)
x4
=
self.aspp4(x)
x5
=
self.global_avg_pool(x)
x5
=
x5.broadcast((1,1,x4.shape[2],x4.shape[3]))
x
=
concat((x1,
x2,
x3,
x4,
x5),
dim=1)
x
=
self.conv1(x)
x
=
self.bn1(x)
x
=
self.relu(x)
x
=
self.dropout(x)
return
x
classGlobalPooling
(Module):
def
__init__(self):
super(GlobalPooling,
self).__init__()
def
execute
(self,
x):
return
jt.mean(x,
dims=[2,3],
keepdims=1)
2.3 Decoder:
Decoder 将 ASPP 的特征放大后与 ResNet 的中间特征一起 concat, 得到最后分割所用的特征。
importjittor
as
jt
fromjittor
import
nn
fromjittor
import
Module
fromjittor
import
init
fromjittor.contrib
import
concat
importtime
classDecoder(nn.Module):
def
__init__(self,
num_classes):
super(Decoder,
self).__init__()
low_level_inplanes
=
256
self.conv1
=
nn.Conv(low_level_inplanes,
48,
1,
bias=False)
self.bn1
=
nn.BatchNorm(48)
self.relu
=
nn.ReLU()
self.last_conv
=
nn.Sequential(nn.Conv(304,
256,
kernel_size=3,
stride=1,
padding=1,
bias=False),
nn.BatchNorm(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv(256,
256,
kernel_size=3,
stride=1,
padding=1,
bias=False),
nn.BatchNorm(256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv(256,
num_classes,
kernel_size=1,
stride=1,
bias=True))
def
execute(self,
x,
low_level_feat):
low_level_feat
=
self.conv1(low_level_feat)
low_level_feat
=
self.bn1(low_level_feat)
low_level_feat
=
self.relu(low_level_feat)
x_inter
=
nn.resize(x,
size=(low_level_feat.shape[2],
low_level_feat.shape[3])
,
mode='bilinear')
x_concat
=
concat((x_inter,
low_level_feat),
dim=1)
x
=
self.last_conv(x_concat)
return
x
2.4 完整的模型整合如下: 即将以上部分通过一个类连接起来。
importjittor
as
jt
fromjittor
import
nn
fromjittor
import
Module
fromjittor
import
init
fromjittor.contrib
import
concat
fromdecoder
import
Decoder
fromaspp
import
ASPP
frombackbone
import
resnet50,
resnet101
classDeepLab(Module):
def
__init__(self,
output_stride=16,
num_classes=21):
super(DeepLab,
self).__init__()
self.backbone
=
resnet101(output_stride=output_stride)
self.aspp
=
ASPP(output_stride)
self.decoder
=
Decoder(num_classes)
def
execute(self,
input):
x,
low_level_feat
=
self.backbone(input)
x
=
self.aspp(x)
x
=
self.decoder(x,
low_level_feat)
x
=
nn.resize(x,
size=(input.shape[2],
input.shape[3]),
mode='bilinear')
return
x
3. 模型训练
3.1 模型训练参数设定如下:
# Learning parameters
batch_size=
8
learning_rate=
0.005
momentum=
0.9
weight_decay=
1e-4
epochs=
50
3.2 定义模型、优化器、数据加载器。
model=
DeepLab(output_stride=16,
num_classes=21)
optimizer=
nn.SGD(model.parameters(),
lr,
momentum=momentum,
weight_decay=weight_decay)
train_loader=
TrainDataset(data_root='/vocdata/',
split='train',
batch_size=batch_size,
shuffle=True)
val_loader=
ValDataset(data_root='/vocdata/',
split='val',
batch_size=1,
shuffle=False)
3.3 模型训练与验证
# lr scheduler
defpoly_lr_scheduler(opt,
init_lr,
iter,
epoch,
max_iter,
max_epoch):
new_lr
=
init_lr
*
(1
-
float(epoch
*
max_iter
+
iter)
/
(max_epoch
*
max_iter))
**
0.9
opt.lr
=
new_lr
# train function
deftrain(model,
train_loader,
optimizer,
epoch,
init_lr):
model.train()
max_iter
=
len(train_loader)
for
idx,
(image,
target)
in
enumerate(train_loader):
poly_lr_scheduler(optimizer,
init_lr,
idx,
epoch,
max_iter,
50)
# using poly_lr_scheduler
image
=
image.float32()
pred
=
model(image)
loss
=
nn.cross_entropy_loss(pred,
target,
ignore_index=255)
optimizer.step
(loss)
('Training in epoch {} iteration {} loss = {}'.format(epoch,
idx,
loss.data[0]))
# val function
# we omit evaluator code and you can
defval
(model,
val_loader,
epoch,
evaluator):
model.eval()
evaluator.reset()
for
idx,
(image,
target)
in
enumerate(val_loader):
image
=
image.float32()
output
=
model(image)
pred
=
output.data
target
=
target.data
pred
=
np.argmax(pred,
axis=1)
evaluator.add_batch(target,
pred)
('Test in epoch {} iteration {}'.format(epoch,
idx))
Acc
=
evaluator.Pixel_Accuracy()
Acc_class
=
evaluator.Pixel_Accuracy_Class()
mIoU
=
evaluator.Mean_Intersection_over_Union()
FWIoU
=
evaluator.Frequency_Weighted_Intersection_over_Union()
best_miou
=
0.0
if
(mIoU
>
best_miou):
best_miou
=
mIoU
('Testing result of epoch {} miou = {} Acc = {} Acc_class = {} \
FWIoU = {} Best Miou = {}'.format(epoch,mIoU,
Acc,
Acc_class,
FWIoU,
best_miou))
3.4 evaluator 写法:使用混淆矩阵计算 Pixel accuracy 和 mIoU。
classEvaluator(object):
def
__init__(self,
num_class):
self.num_class
=
num_class
self.confusion_matrix
=
np.zeros((self.num_class,)*2)
def
Pixel_Accuracy(self):
Acc
=
np.diag(self.confusion_matrix).sum()
/
self.confusion_matrix.sum()
return
Acc
def
Pixel_Accuracy_Class(self):
Acc
=
np.diag(self.confusion_matrix)
/
self.confusion_matrix.sum(axis=1)
Acc
=
np.nanmean(Acc)
return
Acc
def
Mean_Intersection_over_Union(self):
MIoU
=
np.diag(self.confusion_matrix)
/
(
np.sum(self.confusion_matrix,
axis=1)
+
np.sum(self.confusion_matrix,
axis=0)-
np.diag(self.confusion_matrix))
MIoU
=
np.nanmean(MIoU)
return
MIoU
def
Frequency_Weighted_Intersection_over_Union(self):
freq
=
np.sum(self.confusion_matrix,
axis=1)
/
np.sum(self.confusion_matrix)
iu
=
np.diag(self.confusion_matrix)
/
(
np.sum(self.confusion_matrix,
axis=1)
+
np.sum(self.confusion_matrix,
axis=0)
-
np.diag(self.confusion_matrix))
FWIoU
=
(freq[freq
>
0]
*
iu[freq
>
0]).sum()
return
FWIoU
def
_generate_matrix(self,
gt_image,
pre_image):
mask
=
(gt_image
>=
0)
&
(gt_image
<
self.num_class)
label
=
self.num_class
*
gt_image[mask].astype('int')
+
pre_image[mask]
count
=
np.bincount(label,
minlength=self.num_class**2)
confusion_matrix
=
count.reshape(self.num_class,
self.num_class)
return
confusion_matrix
def
add_batch(self,
gt_image,
pre_image):
assert
gt_image.shape
==
pre_image.shape
self.confusion_matrix
+=
self._generate_matrix(gt_image,
pre_image)
def
reset(self):
self.confusion_matrix
=
np.zeros((self.num_class,)
*
2)
3.5 训练入口函数
epochs=
50
evaluator=
Evaluator(21)
train_loader=
TrainDataset(data_root='/voc/data/path/',
split='train',
batch_size=8,
shuffle=True)
val_loader=
ValDataset(data_root='/voc/data/path/',
split='val',
batch_size=1,
shuffle=False)
learning_rate=
0.005
momentum=
0.9
weight_decay=
1e-4
optimizer=
nn.SGD(model.parameters(),
learning_rate,
momentum,
weight_decay)
forepoch
in
range
(epochs):
train(model,
train_loader,
optimizer,
epoch,
learning_rate)
val(model,
val_loader,
epoch,
evaluator)
4. 参考
- pytorch-deeplab-xception
- Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
DeepLabV3+语义分割实战的更多相关文章
- 人工智能必须要知道的语义分割模型:DeepLabv3+
图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点 ...
- 全卷积网络(FCN)实战:使用FCN实现语义分割
摘要:FCN对图像进行像素级的分类,从而解决了语义级别的图像分割问题. 本文分享自华为云社区<全卷积网络(FCN)实战:使用FCN实现语义分割>,作者: AI浩. FCN对图像进行像素级的 ...
- 使用LabVIEW实现基于pytorch的DeepLabv3图像语义分割
前言 今天我们一起来看一下如何使用LabVIEW实现语义分割. 一.什么是语义分割 图像语义分割(semantic segmentation),从字面意思上理解就是让计算机根据图像的语义来进行分割,例 ...
- 自动网络搜索(NAS)在语义分割上的应用(二)
前言: 本文将介绍如何基于ProxylessNAS搜索semantic segmentation模型,最终搜索得到的模型结构可在CPU上达到36 fps的测试结果,展示自动网络搜索(NAS)在语义分割 ...
- 语义分割的简单指南 A Simple Guide to Semantic Segmentation
语义分割是将标签分配给图像中的每个像素的过程.这与分类形成鲜明对比,其中单个标签被分配给整个图片.语义分段将同一类的多个对象视为单个实体.另一方面,实例分段将同一类的多个对象视为不同的单个对象(或实例 ...
- 语义分割丨PSPNet源码解析「训练阶段」
引言 之前一段时间在参与语义分割的项目,最近有时间了,正好把这段时间的所学总结一下. 在代码上,语义分割的框架会比目标检测简单很多,但其中也涉及了很多细节.在这篇文章中,我以PSPNet为例,解读一下 ...
- 语义分割丨DeepLab系列总结「v1、v2、v3、v3+」
花了点时间梳理了一下DeepLab系列的工作,主要关注每篇工作的背景和贡献,理清它们之间的联系,而实验和部分细节并没有过多介绍,请见谅. DeepLabv1 Semantic image segmen ...
- Learning a Discriminative Feature Network for Semantic Segmentation(语义分割DFN,区别特征网络)
1.介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类).本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络 ...
- 自动网络搜索(NAS)在语义分割上的应用(一)
[摘要]本文简单介绍了NAS的发展现况和在语义分割中的应用,并且详细解读了两篇流行的work:DARTS和Auto-DeepLab. 自动网络搜索 多数神经网络结构都是基于一些成熟的backbone, ...
随机推荐
- 命令行运行py文件报错
起因 今天用ubuntu 终端运行py文件报了个错,找不到模块? 我切换回pycharm中运行,运行一切正常 解决 在报错模块中,插入绝对路径 import sys sys.path.append(' ...
- php自定义配置文件简单写法
1 <?php 2 header("Content-type:text/html;charset=utf-8"); 3 4 $q = getconfig('rr'); 5 e ...
- 洛谷P1085 不高兴的津津
题目描述 津津上初中了.妈妈认为津津应该更加用功学习,所以津津除了上学之外,还要参加妈妈为她报名的各科复习班.另外每周妈妈还会送她去学习朗诵.舞蹈和钢琴.但是津津如果一天上课超过八个小时就会不高兴,而 ...
- UVA11019KMP(二维矩阵匹配出现次数)
题意: 给你两个矩阵,一个大的一个小的,然后问你这个小矩阵在大的矩阵里出现了多少次? 思路: 说好了AC自动机的,我自己尝试写了个暴力的KMP竟然过了,AC自动机自己的模板还没写完 ...
- 缓冲区溢出之栈溢出利用(手动编写无 payload 的 Exploit)
0x01 介绍 Exploit 的英文意思就是利用,它在黑客眼里就是漏洞利用.有漏洞不一定就有Exploit(利用),有Exploit就肯定有漏洞.编写缓冲区溢出的Exploit分为3个方面:漏洞溢出 ...
- 通过使用 NTLite 工具实现精简Windows系统
NTLite 是一款专业于Windows平台的系统精简工具,NTLite主要面对系统封装人员使用,比如各大下载站及GHO镜像下载站,Windows系统二次精简封装打包使用,NTLite可以对系统进行极 ...
- typecho+宝塔搭建
在这个互动视频中很详细的讲解到了 https://www.bilibili.com/video/BV1o4411r7x5?spm_id_from=pageDriver
- Linux安装与使用FTP服务-vsftpd
简介 vsftpd 是"very secure FTP daemon"的缩写,安全性是它的一个最大的特点.vsftpd 是一个 UNIX 类操作系统上运行的服务器的名字,它可以运行 ...
- 序列化-Json
常见的Json转换工具有google的gson和阿里的fastgson.目前主流策略:POJO序列化成JSON字符串用Gson库,JSON字符串反序列化为POJO,用fastJson库. Netty中 ...
- 使用MindSpore的线性神经网络拟合非线性函数
技术背景 在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案.MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编 ...