由 Hinton 提出的标准自动编码机(标准自编码器)只有一个隐藏层,隐藏层中神经元的数量少于输入(和输出)层中神经元的数量,这会压缩网络中的信息,因此可以将隐藏层看作是一个压缩层,限定保留的信息。

自动编码机的学习包括在隐藏层上对输入信号进行压缩表示,然后在输出层尽可能地复现原始输入:
 
图 1 单隐藏层的自动编码机
 
本节利用自动编码机进行图像重构,将利用 MNIST 数据训练自动编码机,并使用它来重构测试图像。
具体做法
  1. 导入所有必要的模块:
 
  1. TensorFlow 中获取 MNIST 数据,这里要注意的一点是,标签并没有进行独热编码,因为并没有使用标签来训练网络。自动编码机是通过无监督学习进行训练的:
 
  1. 声明 AutoEncoder 类,使用 init 方法初始化自动编码机的权重、偏置和占位符,也可以在 init 方法中构建全部的计算图。还需要定义编码器、解码器,set_session(会话建立)和 fit 方法。此处构建的自动编码机使用简单的均方误差作为损失函数,使用 AdamOptimizer 进行优化:
为便于使用,此处还定义了两个辅助函数,reduced_dimension 给出编码器网络的输出,reconstruct 给出重构的测试图像的输出。
  1. 训练时将输入数据转换为 float 型,初始化所有变量并运行会话。在计算时,目前只是测试自动编码机的重构能力:
 
  1. 绘制误差在训练周期中的变化图,验证网络的均方误差在训练时是否得到优化,对于一个好的训练,误差应该随着训练周期的增加而减少:
图示如下:
可以看到,随着网络的学习,损失/成本是下降的,当训练周期达到 5000 时,几乎是在一条线上振荡,这意味着进一步增加训练周期将不再有用。如果现在还想要改进模型,应该调整学习率、批量大小和优化器等超参数。
  1. 观察重构的图像,对比原始图像和自动编码机生成的重构图像:
得到以下结果:
 
解读分析
有意思的是,在前面的代码中,维数从输入的 784 降到了 256,但是网络仍然可以重构原始图像。将自动编码机性能与 RBM 进行对比,其中隐藏层维数相等:
 
 
 可以看到,由自动编码机重构的图像比 RBM 重构的图像要清晰得多。原因在于自动编码机中有更多的权重(从隐藏层到解码器输出层的权重)被训练。自动编码机学到的细节更多,即使两者都将信息压缩到相同的尺寸,其性能也优于 RBM。
知识扩展
像 PCA 一样,自动编码机也可以用于降维,但 PCA 只能进行线性变换,而自动编码机可以使用非线性激活函数,从而在其中引入非线性变换。
下图是 Hinton 的论文“Reducing the dimensionality of data with Neural Networks”复现的结果,图 A 显示 PCA 的结果,图 B 是由 RBM 堆叠的自动编码机(每层节点为 784-1000-500-250-2)的结果:
 
 
正如稍后会看到的,使用堆叠自动编码机时,每个自动编码机最初会独立进行预训练,然后会对整个网络进行微调以获得更好的性能。
 
 
 
 

标准自编码器(TensorFlow实现)的更多相关文章

  1. HEVC(H.265)标准的编码器(x265,DivX265)试用

    基于HEVC(H.265)的的应用级别的编码器发展的速度很快.所说的应用级别,就是指速度比较快的,有实际应用价值的编码器.目前可以直接使用的有两个:x265,DivX265. DivX265 DivX ...

  2. 7 Recursive AutoEncoder结构递归自编码器(tensorflow)不能调用GPU进行计算的问题(非机器配置,而是网络结构的问题)

    一.源代码下载 代码最初来源于Github:https://github.com/vijayvee/Recursive-neural-networks-TensorFlow,代码介绍如下:“This ...

  3. 倍福TwinCAT(贝福Beckhoff)常见问题(FAQ)如何修改标准驱动器编码器分辨率

    在某个轴的Enc上双击,可以修改Scaling Factor Numerator     更多教学视频和资料下载,欢迎关注以下信息: 我的优酷空间: http://i.youku.com/acetao ...

  4. TensorFlow文档翻译-01-TensorFlow入门

    版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/junyang/p/7429771.html TensorFlow入门 英文原文地址:https://w ...

  5. Simotion 绝对值编码器使用外部开关回零

    问题来源: 西门子的1FK7二代电机,目前已经没有增量编码器.标准的编码器选项是单圈绝对值,或多圈绝对值. 在某些应用中,如印刷机的版辊.模切轴.飞剪电机等,需要使用外部开关来回零.下文描述了使用外部 ...

  6. tensorflow数据加载、模型训练及预测

    数据集 DNN 依赖于大量的数据.可以收集或生成数据,也可以使用可用的标准数据集.TensorFlow 支持三种主要的读取数据的方法,可以在不同的数据集中使用:本教程中用来训练建立模型的一些数据集介绍 ...

  7. tensorflow批量读取数据

    Tensorflow 数据读取有三种方式: Preloaded data: 预加载数据,在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). Feeding: Pyt ...

  8. tensorflow实现验证码识别案例

    1.知识点 """ 验证码分析: 对图片进行分析: 1.分割识别 2.整体识别 输出:[3,5,7] -->softmax转为概率[0.04,0.16,0.8] - ...

  9. TensorFlow从0到1之浅谈深度学习(10)

    DNN(深度神经网络算法)现在是AI社区的流行词.最近,DNN 在许多数据科学竞赛/Kaggle 竞赛中获得了多次冠军. 自从 1962 年 Rosenblat 提出感知机(Perceptron)以来 ...

随机推荐

  1. hdu3074 线段树求区间乘积(单点更新)

    题意:       给你n个数,两种操作,(1) 把第b个数改成c (2)算出b-c的乘积,结果对1000000007取余. 思路:       线段树单点更新,简单题目,不多解释,具体看代码. #i ...

  2. JavaWeb——MySQL约束

    内容索引 1. DQL:查询语句 1. 排序查询 2. 聚合函数 3. 分组查询 4. 分页查询 2. 约束 3. 多表之间的关系 4. 范式 5. 数据库的备份和还原 DQL:查询语句 1. 排序查 ...

  3. windows性能计数器搜集方法

    windows性能计数器搜集方法 PerfMon-Windows性能监视器是个好东西,可以辅助我们分析发生问题时间段服务器资源占用情况,但是部署性能计数器确实一个相当麻烦的事情,往往这种枯燥的事别人还 ...

  4. [知识路书]beta设计和计划

    [知识路书]beta设计和计划 一.需求再分析 根据用户反馈,是否发现之前的需求分析有偏差?为什么会出现这种偏差?beta阶段你们是否能真的分析清楚用户需求?如何做到? 根据alpha阶段的推广情况以 ...

  5. [Django框架 - 静态文件配置、request对象方法初识、 pycharm链接数据库、ORM实操增删改查、django请求生命周期]

    [Django框架 - 静态文件配置.request对象方法初识. pycharm链接数据库.ORM实操增删改查.django请求生命周期] 我们将html文件默认都放在templates文件夹下 将 ...

  6. 自定义元类 __call__,__init__,__new__总结

    只要对象能被调用 产生对象的类里必然有__call__方法 在调用类时,必定先触发type里的__call__ __call__下有: 1.产生对象的object.__new__ 2..被调用的类自己 ...

  7. 啥?SynchronousQueue和钟点房一个道理

    今天这篇文章,我们继续讲架构师大刘的故事. 大刘有段时间经常会给一些程序员讲课.这一方面是由于团队培训的需要,一方面也是大刘自身想搞搞凡尔赛,嘚瑟一下自身的实力. 大刘讲课是允许公司任何一个人进去听的 ...

  8. java基础——if和Swith的应用

    顺序结构 java的基本结构就是顺序结构,除非特别说明,否则就按照一句一句的执行 它是任何一个算法都离不开的基本算法结构 选择结构 if单选择 if双选择 if多选择 嵌套的if结构 switch多选 ...

  9. [刷题] 75 Sort Colors

    要求 给只有0 1 2三个元素的数组排序 思路 方法1:遍历数组,利用辅助数组保存三个元素的个数,再写入(遍历两遍) 辅助数组有三个元素,对应0 1 2的个数 方法2:模拟三路快排,遍历一遍完成排序 ...

  10. Scala 中的可变(var)与不可变(val)

    引言 Scala 中定义变量分为 var(可变变量)和 val(不可变变量) Scala 中集合框架也分为可变集合和不可变集合.比如 List(列表) 和 Tuple(元组)本身就是不可变的,set ...