TensorFlow反向传播算法实现

反向传播(BPN)算法是神经网络中研究最多、使用最多的算法之一,用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重。



学习 BPN 算法可以分成以下两个过程:

  1. 正向传播:输入被馈送到网络,信号从输入层通过隐藏层传播到输出层。在输出层,计算误差和损失函数。
  2. 反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度。接下来用梯度更新权重。

这两个过程重复迭代直到收敛。

前期准备

首先给网络提供 M 个训练对(X,Y),X 为输入,Y 为期望的输出。输入通过激活函数 g(h) 和隐藏层传播到输出层。输出 Yhat 是网络的输出,得到 error=Y-Yhat。其损失函数 J(W) 如下:

其中,i 取遍所有输出层的神经元(1 到 N)。然后可以使用 J(W) 的梯度并使用链式法则求导,来计算连接第 i 个输出层神经元到第 j 个隐藏层神经元的权重 Wij 的变化:

这里,Oj 是隐藏层神经元的输出,h 表示隐藏层的输入值。这很容易理解,但现在怎么更新连接第 n 个隐藏层的神经元 k 到第 n+1 个隐藏层的神经元 j
的权值 Wjk?过程是相同的:将使用损失函数的梯度和链式法则求导,但这次计算 Wjk

现在已经有方程了,看看如何在 TensorFlow 中做到这一点。在这里,还是使用 MNIST 数据集(http://yann.lecun.com/exdb/MNIST/)。

具体实现过程

现在开始使用反向传播算法:

  1. 导入模块:

  1. 加载数据集,通过设置 one_hot=True 来使用独热编码标签:

  1. 定义超参数和其他常量。这里,每个手写数字的尺寸是 28×28=784 像素。数据集被分为
    10 类,以 0 到 9 之间的数字表示。这两点是固定的。学习率、最大迭代周期数、每次批量训练的批量大小以及隐藏层中的神经元数量都是超参数。可以通过调整这些超参数,看看是如何影响网络表现的:

  1. 需要 Sigmoid 函数的导数来进行权重更新,所以定义:

  1. 为训练数据创建占位符:

  1. 创建模型:

  1. 定义权重和偏置变量:

  1. 为正向传播、误差、梯度和更新计算创建计算图:

  1. 定义计算精度 accuracy 的操作:

  1. 初始化变量:

  1. 执行图:

  1. 结果如下:

解读分析

在这里,训练网络时的批量大小为 10,如果增加批量的值,网络性能就会下降。另外,需要在测试数据集上检测训练好的网络的精度,这里测试数据集的大小是 1000。



单隐藏层多层感知机在训练数据集上的准确率为 84.45,在测试数据集上的准确率为 92.1。这是好的,但不够好。MNIST 数据集被用作机器学习中分类问题的基准。接下来,看一下如何使用 TensorFlow 的内置优化器影响网络性能。

TensorFlow反向传播算法实现的更多相关文章

  1. [2] TensorFlow 向前传播算法(forward-propagation)与反向传播算法(back-propagation)

    TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlo ...

  2. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  3. 机器学习 —— 基础整理(七)前馈神经网络的BP反向传播算法步骤整理

    这里把按 [1] 推导的BP算法(Backpropagation)步骤整理一下.突然想整理这个的原因是知乎上看到了一个帅呆了的求矩阵微分的方法(也就是 [2]),不得不感叹作者的功力.[1] 中直接使 ...

  4. 神经网络训练中的Tricks之高效BP(反向传播算法)

    神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...

  5. 稀疏自动编码之反向传播算法(BP)

    假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值.第二项是一个归一化项( ...

  6. 深度神经网络(DNN)反向传播算法(BP)

    在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...

  7. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  8. 循环神经网络(RNN)模型与前向反向传播算法

    在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Rec ...

  9. LSTM模型与前向反向传播算法

    在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long ...

随机推荐

  1. 在Android的App中动态的加载Java类

    原文的地址:http://yenliangl.blogspot.com/2009/11/dynamic-loading-of-classes-in-your.html 我正在编写一个应用程序能够加载别 ...

  2. python中实现打印特定字符变换

    首先需要将 lib文件 放在该文件同一目录 使用的时候,先导入 from lib.common import print_msg ,然后调用里面的 print_msg() 方法即可! lib文件地址: ...

  3. MySQL的Double Write并不难理解

    目录 问题引入- 断电了 不一会 - 来电了 Double write工作流程 恢复的过程 配置参数 疑问 推荐阅读 问题引入- 断电了 今天为大家介绍一个新的名词:double write. 相信你 ...

  4. 【js】Leetcode每日一题-制作m束花所需的最少天数

    [js]Leetcode每日一题-制作m束花所需的最少天数 [题目描述] 给你一个整数数组 bloomDay,以及两个整数 m 和 k . 现需要制作 m 束花.制作花束时,需要使用花园中 相邻的 k ...

  5. Day004 选择结构

    选择结构 if单选择结构(if) if双选择结构(if...else...) if多选择结构(if..else if...else) 嵌套的if结构 switch多选择结构 switch语句中的变量类 ...

  6. 【vue-03】组件化开发 component

    vue组件化思想 组件化是vue的一个重要思想 它提供了一种抽象,让我们可以开发出一个个独立可复用的小组件来构建我们的应用. 任何的应用都会被抽象成一颗组件树. 注册组件 组件的使用分成三个步骤:创建 ...

  7. Django(3)pycharm创建项目

    创建项目 我们创建django项目有两种方式,命令行方式和使用pycharm工具创建,本文就介绍常用的pycharm工具创建   首先点击django,输入项目的名称,选择创建好的虚拟环境,最后点击c ...

  8. Educational Codeforces Round 101 (Rated for Div. 2)

    A. Regular Bracket Sequence 题意:题目中给(和)还有?,其中?可以转换成为()中的任何一个,并且所给样例中只出现一次(),问能不能括号匹配 思路:直接看第一个和最后一个能不 ...

  9. J2SE基础题

    J2SE基础 八种基本数据类型的大小,以及他们的封装类.(有的也说是9中基本数据类型,包括了void) 基本类型 大小(字节) 默认值 封装类 byte 1 (byte)0 Byte short 2 ...

  10. 有哪些适合中小企业使用的PaaS平台?

    对于中小企业来说,在业务上同样需要工作流.应用平台来进行支持,但是,面对诸如ERP等动辄好几十万的费用来说,完全是在增加运营成本.如何解决中小企业对于业务应用.工作流管理的需求问题呢?使用PaaS低代 ...