SoftRas 是目前主流三角网格可微渲染器之一。

可微渲染通过计算渲染过程的导数,使得从单张图片学习三维结构逐渐成为现实。可微渲染目前被广泛地应用于三维重建,特别是人体重建、人脸重建和三维属性估计等应用中。

安装

conda 安装 PyTorch 环境:

conda create -n torch python=3.8 -y
conda activate torch conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia -y conda activate torch
python - <<-EOF
import platform
import torch
print(f"Python : {platform.python_version()}")
print(f"PyTorch: {torch.__version__}")
print(f" CUDA : {torch.version.cuda}")
EOF Python : 3.8.10
PyTorch: 1.9.0
CUDA : 11.1

获取代码并安装:

git clone https://github.com/ShichenLiu/SoftRas.git
cd SoftRas
python setup.py install

可设 setup.py 镜像源:

cat <<-EOF > ~/.pydistutils.cfg
[easy_install]
index_url = http://mirrors.aliyun.com/pypi/simple
EOF

应用

安装模型查看工具:

snap install ogre-meshviewer
# 或
snap install meshlab

渲染物体

渲染测试:

CUDA_VISIBLE_DEVICES=0 python examples/demo_render.py

渲染结果:

对比前后模型:

ogre-meshviewer data/obj/spot/spot_triangulated.obj

ogre-meshviewer data/results/output_render/saved_spot.obj

Mesh 重建

下载数据集:

bash examples/recon/download_dataset.sh

训练模型:

$ CUDA_VISIBLE_DEVICES=0 python examples/recon/train.py -eid recon
Loading dataset: 100%|██████████████████████████| 13/13 [00:35<00:00, 2.74s/it]
Iter: [0/250000] Time 1.189 Loss 0.655 lr 0.000100 sv 0.000100
Iter: [100/250000] Time 0.464 Loss 0.405 lr 0.000100 sv 0.000100
...
Iter: [250000/250000] Time 0.450 Loss 0.128 lr 0.000030 sv 0.000030

测试模型:

$ CUDA_VISIBLE_DEVICES=0 python examples/recon/test.py -eid recon \
-d 'data/results/models/recon/checkpoint_0250000.pth.tar'
Loading dataset: 100%|██████████████████████████| 13/13 [00:03<00:00, 3.25it/s]
Iter: [0/97] Time 0.419 IoU 0.697
=================================
Mean IoU: 65.586 for class Airplane Iter: [0/43] Time 0.095 IoU 0.587
=================================
Mean IoU: 49.798 for class Bench Iter: [0/37] Time 0.089 IoU 0.621
=================================
Mean IoU: 68.975 for class Cabinet Iter: [0/179] Time 0.088 IoU 0.741
Iter: [100/179] Time 0.083 IoU 0.772
=================================
Mean IoU: 74.224 for class Car Iter: [0/162] Time 0.086 IoU 0.565
Iter: [100/162] Time 0.085 IoU 0.522
=================================
Mean IoU: 52.933 for class Chair Iter: [0/26] Time 0.094 IoU 0.681
=================================
Mean IoU: 60.553 for class Display Iter: [0/55] Time 0.087 IoU 0.526
=================================
Mean IoU: 45.751 for class Lamp Iter: [0/38] Time 0.086 IoU 0.580
=================================
Mean IoU: 65.626 for class Loudspeaker Iter: [0/56] Time 0.090 IoU 0.783
=================================
Mean IoU: 68.683 for class Rifle Iter: [0/76] Time 0.092 IoU 0.647
=================================
Mean IoU: 68.111 for class Sofa Iter: [0/204] Time 0.090 IoU 0.405
Iter: [100/204] Time 0.087 IoU 0.435
Iter: [200/204] Time 0.086 IoU 0.567
=================================
Mean IoU: 46.206 for class Table Iter: [0/25] Time 0.097 IoU 0.901
=================================
Mean IoU: 82.261 for class Telephone Iter: [0/46] Time 0.087 IoU 0.503
=================================
Mean IoU: 61.019 for class Watercraft =================================
Mean IoU: 62.287 for all classes

Mesh 重建:

# 获取 `softras_recon.py` 进 `examples/recon/`
# https://github.com/ikuokuo/start-3d-recon/blob/master/samples/softras_recon.py
# 注释 `iou` 直接返回 0,位于 `examples/recon/models.py` `evaluate_iou()` # 2D 图像重构 3D Mesh
CUDA_VISIBLE_DEVICES=0 python examples/recon/softras_recon.py \
-s '.' \
-d 'data/results/models/recon/checkpoint_0250000.pth.tar' \
-img 'data/car_64x64.png' ogre-meshviewer data/car_64x64.obj

重建图像:

重建结果:

或重建 ShapeNet 数据集内图像:

# mesh recon images of ShapeNet dataset
CUDA_VISIBLE_DEVICES=0 python examples/recon/softras_recon.py \
-s '.' \
-d 'data/results/models/recon/checkpoint_0250000.pth.tar' \
-imgs 'data/datasets/02958343_test_images.npz'

或使用 SoftRas 训练好的模型:

  • SoftRas trained with silhouettes supervision (62+ IoU): google drive
  • SoftRas trained with shading supervision (64+ IoU, test with --shading-model arg): google drive
  • SoftRas reconstructed meshes with color (random sampled): google drive

更多

GoCoding 个人实践的经验分享,可关注公众号!

可微渲染 SoftRas 实践的更多相关文章

  1. 探索react native首屏渲染最佳实践

    文 / 腾讯 龚麒 0.前言 react native给了我们使用javascript开发原生app的能力,在使用react native完成兴趣部落安卓端发现tab改造后,我们开始对由react n ...

  2. 腾讯优测优分享 | 探索react native首屏渲染最佳实践

    腾讯优测是专业的移动云测试平台,旗下的优分享不定时提供大量移动研发及测试相关的干货~ 此文主要与以下内容相关,希望对大家有帮助. react native给了我们使用javascript开发原生app ...

  3. React服务器渲染最佳实践

    源码地址:https://github.com/skyFi/dva-starter React服务器渲染最佳实践 dva-starter 完美使用 dva react react-router,最好用 ...

  4. 闲聊 “今日头条Go建千亿级微服务的实践”

      背景    今天跟同事偶然看到<今日头条Go建千亿级微服务的实践>文章,故做了一些探讨,与大家分享下,也欢迎大家多多共同探讨!.     其他资料:   如何理解 Golang 中“不 ...

  5. python3和grpc的微服务探索实践

    对于微服务的实践,一般都是基于Java和Golang的,博主最近研究了下基于Python的微服务实践,现在通过一个简单的服务来分析Python技术栈的微服务实践 技术栈:Python3 + grpc ...

  6. 基于 Docker 的微服务架构实践

    本文来自作者 未闻 在 GitChat 分享的{基于 Docker 的微服务架构实践} 前言 基于 Docker 的容器技术是在2015年的时候开始接触的,两年多的时间,作为一名 Docker 的 D ...

  7. 微服务架构实践 - 你只懂docker与spring boot就够了吗?

    微服务架构实践 - 你只懂docker与spring boot就够了吗? 作者 浮云发发 已关注 2017.02.27 02:50* 字数 2613 阅读 2583评论 6喜欢 35赞赏 2 微服务并 ...

  8. NET Core 2.0 微服务跨平台实践

    NET Core 2.0 微服务跨平台实践 相关博文: Ubuntu 简单安装 Docker Mac OS.Ubuntu 安装及使用 Consul Consul 服务注册与服务发现 Fabio 安装和 ...

  9. 今日头条Go建千亿级微服务的实践

    今日头条Go建千亿级微服务的实践_36氪 http://36kr.com/p/5073181.html

随机推荐

  1. 【翻译】WPF中的数据绑定表达式

    有很多文章讨论绑定的概念,并讲解如何使用StaticResources和DynamicResources绑定属性.这些概念使用WPF提供的数据绑定表达式.在本文中,让我们研究WPF提供的不同类型的数据 ...

  2. Redis数据结构—链表与字典

    目录 Redis数据结构-链表与字典 链表 Redis链表节点的结构 Redis链表的表示 Redis链表用在哪 字典 Redis字典结构总览 Redis字典结构分解 哈希算法 解决键冲突 rehas ...

  3. tp5.1中返回当天、昨天、当月等的开始和结束时间戳

    /** * 返回今日开始和结束的时间戳 * * @return array */function today(){ list($y, $m, $d) = explode('-', date('Y-m- ...

  4. Google Chrome飞天小恐龙

    输入网址 chrome://dino/ ,F12->console,上代码 满分 Runner.instance_.setSpeed(99999); 不死护体 window.tempGameOv ...

  5. XAMPP修改Apache默认网站目录htdocs的详解

    XAMPP(Apache+MySQL+PHP+PERL)是一个功能强大的建 XAMPP 软件站集成环境包,大量站长在使用.正确安装好XAMPP后,默认是必须将php程序放到xampp\htdocs文件 ...

  6. python分析《三国演义》,谁才是这部书的绝对主角(包含统计指定角色的方法)

    前面分析统计了金庸名著<倚天屠龙记>中人物按照出现次数并排序 https://www.cnblogs.com/becks/p/11421214.html 然后使用pyecharts,统计B ...

  7. 在ZOHO企业网盘中如何快速搜索文件?

    现在越来越多的企业采用企业网盘来存储文档和资料,而且现在市面上的企业网盘各种各样.在使用企业网盘过程中,很多用户会问到企业网盘中如何快速搜索文件的问题.但是无论是"标签"功能还是普 ...

  8. kubernetes dashboard延长自动超时注销

    方法1:部署清单时,修改yaml文件,添加 container.Args 增加 --token-ttl=43200 其中43200是设置自动超时的秒数.也可以设置 token-ttl=0 以完全禁用超 ...

  9. (代替人类)很多操作都在Settings里面。 5.安装第三方库

    2020-02-01 pycharm 使用教程 LingSmart关注 0.0842020.02.07 15:08:50字数 1,394阅读 680 实在无聊,就来学习吧.学习pycharm的使用教程 ...

  10. 重定向-管道技术-xargs命令详解

    重定向 什么是重定向? 将原本要输出在屏幕的内容,重新定向输出到指定的文件或设备中. 为什么要使用重定向? 1.备份的时候需要知道备份的结果. 2.屏幕上输出信息比较重要的时候需要保存下来. 3.定时 ...