作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址: https://leetcode.com/problems/course-schedule/description/

题目描述:

There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.

题目大意

课程表上有一些课,是必须有修学分的先后顺序的,必须要求在上完某些课的情况下才能上下一门。问是否有方案修完所有的课程?

解题方法

方法一:拓扑排序,BFS

看到给的第二个测试用例立马就明白了,就是判断这些课程能否构成有向无环图(DAG)。而任何时候判断DAG的方法要立刻想到拓扑排序。

拓扑排序是对有向无环图(DAG)而言的,对图进行拓扑排序即求其中节点的一个拓扑序列,对于所有的有向边(U, V)(由U指向V),在该序列中节点U都排在节点V之前。

方法是每次选择入度为0的节点,作为序列的下一个节点,然后移除该节点和以从节点出发的所有边。

那这个方法比较简单粗暴了:要循环N次,这个循环次数并不是遍历节点的意思,而是我们如果正常取点的话,N次就能把所有的节点都取完了,如果N次操作结束还没判断出来,那么就不是DAG.在这N次中,每次都找一个入度为0的点,并把它的入度变为-1,作为已经取过的点不再使用,同时把从这个点指向的点的入度都-1.

这个过程中,如果找不到入度为0的点,那么说明存在环。如果N次操作,每次都操作成功的去除了一个入度为0的点,那么说明这个图是DAG.

时间复杂度是O(N ^ 2),空间复杂度是O(N)。

class Solution(object):
def canFinish(self, N, prerequisites):
"""
:type N,: int
:type prerequisites: List[List[int]]
:rtype: bool
"""
graph = collections.defaultdict(list)
indegrees = collections.defaultdict(int)
for u, v in prerequisites:
graph[v].append(u)
indegrees[u] += 1
for i in range(N):
zeroDegree = False
for j in range(N):
if indegrees[j] == 0:
zeroDegree = True
break
if not zeroDegree: return False
indegrees[j] = -1
for node in graph[j]:
indegrees[node] -= 1
return True

方法二:拓扑排序,DFS

同样是拓扑排序,但是换了个做法,使用DFS。这个方法是,我们每次找到一个新的点,判断从这个点出发是否有环。

具体做法是使用一个visited数组,当visited[i]值为0,说明还没判断这个点;当visited[i]值为1,说明当前的循环正在判断这个点;当visited[i]值为2,说明已经判断过这个点,含义是从这个点往后的所有路径都没有环,认为这个点是安全的。

那么,我们对每个点出发都做这个判断,检查这个点出发的所有路径上是否有环,如果判断过程中找到了当前的正在判断的路径,说明有环;找到了已经判断正常的点,说明往后都不可能存在环,所以认为当前的节点也是安全的。如果当前点是未知状态,那么先把当前点标记成正在访问状态,然后找后续的节点,直到找到安全的节点为止。最后如果到达了无路可走的状态,说明当前节点是安全的。

findOrder函数中的for循环是怎么回事呢?这个和BFS循环次数不是同一个概念,这里的循环就是看从第i个节点开始能否到达合理结果。这个节点可能没有出度了,那就把它直接放到path里;也可能有出度,那么就把它后面的节点都进行一次遍历,如果满足条件的节点都放到path里,同时把这次遍历的所有节点都标记成了已经遍历;如果一个节点已经被安全的访问过,那么就放过它,继续遍历下个节点。

时间复杂度是O(N ^ 2),空间复杂度是O(N)。

class Solution(object):
def canFinish(self, N, prerequisites):
"""
:type N,: int
:type prerequisites: List[List[int]]
:rtype: bool
"""
graph = collections.defaultdict(list)
for u, v in prerequisites:
graph[u].append(v)
# 0 = Unknown, 1 = visiting, 2 = visited
visited = [0] * N
for i in range(N):
if not self.dfs(graph, visited, i):
return False
return True # Can we add node i to visited successfully?
def dfs(self, graph, visited, i):
if visited[i] == 1: return False
if visited[i] == 2: return True
visited[i] = 1
for j in graph[i]:
if not self.dfs(graph, visited, j):
return False
visited[i] = 2
return True

参考资料:

https://leetcode.com/problems/course-schedule/discuss/58509/18-22-lines-C++-BFSDFS-Solutions
https://www.youtube.com/watch?v=M6SBePBMznU

日期

2018 年 10 月 6 日 —— 努力看书

【LeetCode】207. Course Schedule 解题报告(Python)的更多相关文章

  1. Java for LeetCode 207 Course Schedule【Medium】

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  2. 【LeetCode】120. Triangle 解题报告(Python)

    [LeetCode]120. Triangle 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址htt ...

  3. LeetCode 1 Two Sum 解题报告

    LeetCode 1 Two Sum 解题报告 偶然间听见leetcode这个平台,这里面题量也不是很多200多题,打算平时有空在研究生期间就刷完,跟跟多的练习算法的人进行交流思想,一定的ACM算法积 ...

  4. 【LeetCode】Permutations II 解题报告

    [题目] Given a collection of numbers that might contain duplicates, return all possible unique permuta ...

  5. 【LeetCode】Island Perimeter 解题报告

    [LeetCode]Island Perimeter 解题报告 [LeetCode] https://leetcode.com/problems/island-perimeter/ Total Acc ...

  6. 【LeetCode】01 Matrix 解题报告

    [LeetCode]01 Matrix 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/01-matrix/#/descripti ...

  7. 【LeetCode】Largest Number 解题报告

    [LeetCode]Largest Number 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/largest-number/# ...

  8. 【LeetCode】Gas Station 解题报告

    [LeetCode]Gas Station 解题报告 标签(空格分隔): LeetCode 题目地址:https://leetcode.com/problems/gas-station/#/descr ...

  9. LeetCode - Course Schedule 解题报告

    以前从来没有写过解题报告,只是看到大肥羊河delta写过不少.最近想把写博客的节奏给带起来,所以就挑一个比较容易的题目练练手. 原题链接 https://leetcode.com/problems/c ...

随机推荐

  1. Linux之crond定时任务

    1. 使用crontab工具配置的定时任务 2. 配置定时任务建议规范 3. 定时任务配置问题导致系统出现故障实例 1. 使用crontab工具配置的定时任务 名称 crontab - 维护单个用户的 ...

  2. printf 的 转义词 -转

    \n    换行 \r    回车键 \b   退后一格 \f    换页 \t    水平制表符 \v   垂直制表符 \a   发出鸣响 \? 插入问号 \"    插入双引号 \'   ...

  3. 日常Java 2021/9/20

    Java随机数 运用Java的random函数实现猜数字游戏 随机产生一个1-50之间的数字,然后让玩家猜数,猜大猜小都给出提示,猜对后游戏停止 package pingchangceshi; imp ...

  4. VIM多标签页

    :tabnew 增加一个标签 :tabc       关闭当前的tab :tabo       关闭所有其他的tab :tabp 或gT 前一个 :tabn 或gt  后一个 :tabs     显示 ...

  5. HongYun-ui搭建记录

    vue项目windows环境初始化 Element-ui使用 vue2 页面路由 vue SCSS 在VUE项目中使用SCSS ,对SCSS的理解和使用(简单明了) vue axios vue coo ...

  6. Hibernate 错误的问题

    配了好几次的Hibernate,老是在create BeanFactory的时候fail.我是用MyEclipse自带的HIbernate,直接加进去的. private static final T ...

  7. Oracle存储过程游标for循环怎么写

    一.不带参数的游标for循环 首先编写存储过程的整体结构,如下: create or replace procedure test_proc is v_date date; --变量定义 begin ...

  8. SpringMVC(3):AJAX

    一,AJAX 简介 AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML) AJAX 不是新的编程语言,而是一种使用现有标准的新方法 ...

  9. 远程连接mysql库问题

    如果你想连接你的mysql的时候发生这个错误: ERROR 1130: Host '192.168.1.3' is not allowed to connect to this MySQL serve ...

  10. nvm命令

    1.安装node nvm install node版本 2.查看已安装版本 nvm list 3.切换node版本 nvm use node版本 4.查看版本 node -v