[atAGC020E]Encoding Subsets
令$f_{S}$表示字符串$S$的答案(所有子集的方案数之和),考虑转移:
1.最后是一个字符串,不妨仅考虑最后一个字符,即$f_{S[1,|S|)}$(字符串下标从1开始),特别的,若$S_{|S|}=1$,还有一个2倍的系数
2.是一个乘法,考虑是$k\times T$,记$l=|T|$,则$T$需要是末尾$k$段长为$l$的串的公共子集,不难发现这个公共子集就是这$k$个串求and后的串$T'$的子集,那么贡献即为$f_{T'}\cdot f_{S[1,|S|-kl]}$
对其记忆化搜索即可,以下来证明状态数:
考虑$f_{S[1,|S|-kl]}$这个状态,一定会通过第一种若干次后得到,因此不需要考虑
接下来,构造一棵搜索树,但这棵搜索树的每一个儿子是父亲的一个长为$kl$的子串($k\ge 2$)的$k$段字符串求and后的结果,$S$为第一层
对于四层即以后的字符串,长度一定不超过$\lfloor\frac{n}{8}\rfloor$,即至多$o(2^{\lfloor\frac{n}{8}\rfloor})$个
对于前三层的字符串,显然只需要统计第三层就足够了
当其中某一层的$k\ge 3$时,那么这一个串长度不超过$\lfloor\frac{n}{6}\rfloor$,类似的总量为$o(2^{\lfloor\frac{n}{6}\rfloor})$,也可以接受
接下来,每一层的$k$都为2,之后假设其父亲长度为$l_{1}$,自己的长度为$l_{2}$,其对应于$S$中,即$S$中的4个长为$l_{2}$的串的and,且第1和2个串相连、第3和4个串相连
因此这个字符串仅取决于第一个起点、第二个起点以及串长,总量为$o(n^{3})$
总复杂度约为$o(2^{\lfloor\frac{n}{6}\rfloor}+n^{3})$,实际上分析仍有很大的改善空间,即跑不满
具体记忆化的实现哈希+map即可
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 #define mod 998244353
5 map<int,int>f[N];
6 char s[N];
7 int get_hash(int l,char *s){
8 int ans=0;
9 for(int i=0;i<l;i++)ans=(3LL*ans+s[i]-'0')%mod;
10 return ans;
11 }
12 int dfs(int l,char *s){
13 if (!l)return 1;
14 int h=get_hash(l,s);
15 if (f[l][h])return f[l][h];
16 int ans=(1+s[l-1]-'0')*dfs(l-1,s)%mod;
17 char t[N];
18 for(int i=1;i<=l/2;i++){
19 for(int k=0;k<i;k++)t[k]=s[l-i+k];
20 for(int j=2;i*j<=l;j++){
21 for(int k=0;k<i;k++)t[k]=min(t[k],s[l-i*j+k]);
22 ans=(ans+1LL*dfs(l-i*j,s)*dfs(i,t))%mod;
23 }
24 }
25 return f[l][h]=ans;
26 }
27 int main(){
28 scanf("%s",s);
29 printf("%d",dfs(strlen(s),s));
30 }
[atAGC020E]Encoding Subsets的更多相关文章
- AtCoder Grand Contest 020 (AGC020) E - Encoding Subsets 动态规划
原文链接www.cnblogs.com/zhouzhendong/p/AGC020E.html 前言 真 \(\cdot\) 信仰型动态规划 题解 我们可以采用信仰型动态规划解决此题. 设 \(dp[ ...
- Atcoder Grand Contest 020 E - Encoding Subsets(记忆化搜索+复杂度分析)
Atcoder 题面传送门 & 洛谷题面传送门 首先先考虑如果没有什么子集的限制怎样计算方案数.明显就是一个区间 \(dp\),这个恰好一年前就做过类似的题目了.我们设 \(f_{l,r}\) ...
- 【AtCoder】AGC020
A - Move and Win 题解 看两个人相遇的时候谁先手即可,相遇之后第一个移动的人必输 代码 #include <bits/stdc++.h> #define fi first ...
- DP 做题记录 II.
里面会有一些数据结构优化 DP 的题目(如 XI.),以及普通 DP. *I. P3643 [APIO2016]划艇 题意简述:给出序列 \(a_i,b_i\),求出有多少序列 \(c_i\) 满足 ...
- WC2021 题目清单
Day2 上午 <IOI题型与趣题分析> 来源 题目 完成情况 备注 IOI2002 Day1T1 Frog 已完成 IOI2002 Day1T2 Utopia IOI2002 Day1T ...
- 多校联训 DP 专题
[UR #20]跳蚤电话 将加边变为加点,方案数为 \((n-1)!\) 除以一个数,\(dp\) 每种方案要除的数之和即可. 点击查看代码 #include<bits/stdc++.h> ...
- 【转】数据预处理之独热编码(One-Hot Encoding)
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...
- 数据预处理:独热编码(One-Hot Encoding)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- Direct Access to Video Encoding and Decoding
来源:http://asciiwwdc.com/2014/sessions/513 Direct Access to Video Encoding and Decoding Session 5 ...
随机推荐
- CSS写一个圣诞树Chrome浏览器小插件
一时兴起,突然想写一个Chrome浏览器插件,不知道写啥,就写了一个圣诞树小插件.项目源码>> Chrome浏览器插件 Chrome浏览器插件最主要的是:index.html.manife ...
- NOIP2012提高组初赛NB题
本题中,我们约定布尔表达式只能包含 p, q, r 三个布尔变量,以及"与"(∧)."或"(∨)."非"(¬)三种布尔运算.如果无论 p, ...
- Mybatis 一对多延迟加载,并且子查询中与主表字段不对应 (19)
Mybatis 一对多延迟加载,并且子查询中与主表字段不对应应用说明. 实现一对多关联(懒加载),一个教研组对应多个教师,既:教师的教研编号与教研组的教研编号关联,并且教师关联教研组外键与教研组编号 ...
- 成功在Caterpillar代码中插入事件对象-20200917
首先搞清楚了Caterpillar的solidity代码生成机制.Caterpillar分为Caterpillar Core和 executepanel两部分. executePanel是UI前端,用 ...
- pycharm环境下配置scrap爬虫环境
[写在开头] 参考文章后面给出了备注信息,是在解决这个问题的时候,查找的比较有亮点的参考文章,如果本文章写的不太清楚的,可以去原文章进行查看.下面列举的四个文章有参考的成分也有验证的成分,解决办法重点 ...
- 【java】【作业】定义课程信息;继承和组合练习
问题: 定义课程信息类,包含课程编号.课程名称及学生成绩.编程实现对软件工程专业的某班级的所有课程成绩统计,包括平均成绩.最高成绩.最低成绩,并打印成绩等级分布律. 分析 初分析: 父类(课程信息类) ...
- ES2020新特性记录
1.可选链操作符 // oldlet ret = obj && obj.first && obj.first.second// newlet ret = obj?.fi ...
- python使用Django框架开发简单项目
一. (1)使用idea生成一个python项目,安装Django框架: pip install django==1.8.2 (2)初始化项目: django-admin startproject x ...
- 【UE4 C++ 基础知识】<5> 容器——TArray
概述 TArray 是UE4中最常用的容器类.其速度快.内存消耗小.安全性高. 其设计时未考虑扩展问题,因此建议在实际操作中勿使用 新建(new) 和 删除(delete) 创建或销毁 TArray ...
- Beta阶段初始任务分配
项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 团队项目-计划-Beta阶段说明书 一.Beta阶段总体规划 根据用户反馈与测试结果修复alpha版本的bu ...