【笔记】sklearn中的SVM以及使用多项式特征以及核函数
sklearn中的SVM以及使用多项式特征以及核函数
sklearn中的SVM的使用
SVM的理论部分
需要注意的是,使用SVM算法,和KNN算法一样,都是需要做数据标准化的处理才可以,因为不同尺度的数据在其中的话,会严重影响SVM的最终结果
(在notebook中)
加载好需要的包,使用鸢尾花数据集,为了方便可视化,只取前两个特征,然后将其绘制出来
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y<2,:2]
y = y[y<2]
plt.scatter(X[y==0,0],X[y==0,1],color='red')
plt.scatter(X[y==1,0],X[y==1,1],color='blue')
图像如下
首先进行数据的标准化的操作,实例化并fit操作,然后对x进行transform操作,传入x_standard,这样就完成了标准化的操作
from sklearn.preprocessing import StandardScaler
standardScaler = StandardScaler()
standardScaler.fit(X,y)
X_standard = standardScaler.transform(X)
在标准化以后就可以调用SVM算法了,对于线性的SVM,可以直接使用LinearSVC类,然后实例化操作,在进行fit,设置C为10的九次方
from sklearn.svm import LinearSVC
svc = LinearSVC(C=1e9)
svc.fit(X_standard,y)
使用先前的绘制函数并绘制图像
from matplotlib.colors import ListedColormap
def plot_decision_boundary(model, axis):
x0,x1 = np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1)
)
X_new = np.c_[x0.ravel(),x1.ravel()]
y_predict = model.predict(X_new)
zz = y_predict.reshape(x0.shape)
custom_cmap = ListedColormap(['#EF9A9A', '#FFF59D', '#90CAF9'])
plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
plot_decision_boundary(svc,axis=[-3,3,-3,3])
plt.scatter(X_standard[y==0,0],X_standard[y==0,1])
plt.scatter(X_standard[y==1,0],X_standard[y==1,1])
图像如下(这就相当于是Hard margin SVM得到的结果)
设置C为0.01,并绘制图像
svc2 = LinearSVC(C=0.01)
svc2.fit(X_standard,y)
plot_decision_boundary(svc2,axis=[-3,3,-3,3])
plt.scatter(X_standard[y==0,0],X_standard[y==0,1])
plt.scatter(X_standard[y==1,0],X_standard[y==1,1])
图像如下(将c缩小以后,有一个蓝色的点被错误分类了)
观察系数以及截距
结果如下
改造绘制函数,在新的函数中添加新的代码,在原先的基础上增加上一些绘制的代码,首先取出相应的系数w以及截距b,此时,模型直线应该是w0x0+w1x1+b=0的形式,不过可以改写成x1=-w0/w1*x0-b/w1的形式,那么每有一个x0,就能求出相应的x1,找到对应的点,将其串联起来就得到了需要的直线
对于绘制的点,在axis[0],axis[1]之间取两百个点,这样就可以求出来上下的直线,将上直线设置为up_y,下设置为down_y,具体可以看这里(链接),由于担心可能超出设置的y的范围,那么就要设置一个过滤,要大于等于最小值,小于等于最大值,然后绘制出两条直线
from matplotlib.colors import ListedColormap
def plot_svc_decision_boundary(model, axis):
x0,x1 = np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1)
)
X_new = np.c_[x0.ravel(),x1.ravel()]
y_predict = model.predict(X_new)
zz = y_predict.reshape(x0.shape)
custom_cmap = ListedColormap(['#EF9A9A', '#FFF59D', '#90CAF9'])
plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
w = model.coef_[0]
b = model.intercept_[0]
plot_x = np.linspace(axis[0],axis[1],200)
up_y = -w[0]/w[1] * plot_x-b/w[1] + 1/w[1]
down_y = -w[0]/w[1] * plot_x-b/w[1] - 1/w[1]
up_index = (up_y >= axis[2])&(up_y <= axis[3])
down_index = (down_y >= axis[2])&(down_y <= axis[3])
plt.plot(plot_x[up_index],up_y[up_index],color="black")
plt.plot(plot_x[down_index],down_y[down_index],color="black")
调用新的绘制函数并进行绘制svc图像
plot_svc_decision_boundary(svc,axis=[-3,3,-3,3])
plt.scatter(X_standard[y==0,0],X_standard[y==0,1])
plt.scatter(X_standard[y==1,0],X_standard[y==1,1])
图像如下
绘制svc2的图像
plot_svc_decision_boundary(svc2,axis=[-3,3,-3,3])
plt.scatter(X_standard[y==0,0],X_standard[y==0,1])
plt.scatter(X_standard[y==1,0],X_standard[y==1,1])
图像如下
以上就是线性问题的svm的使用,那么SVM不止可以解决线性问题,也可以解决非线性数据的问题
在svm中使用多项式特征以及核函数(使用svm来处理非线性数据的问题)
具体实现
(在notebook中)
自动生成非线性的数据make_moons来生成数据集,绘制图像看一下长什么样
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X,y = datasets.make_moons()
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
图像如下
但是这个有点太规整了,所以添加一些噪音进去,设置noise为0.15,其实质上就是使数据的标准差增大,设置随机种子为666,然后再绘制图像看一下
X,y = datasets.make_moons(noise=0.15,random_state=666)
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
图像如下
绘制函数
from matplotlib.colors import ListedColormap
def plot_decision_boundary(model, axis):
x0,x1 = np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1)
)
X_new = np.c_[x0.ravel(),x1.ravel()]
y_predict = model.predict(X_new)
zz = y_predict.reshape(x0.shape)
custom_cmap = ListedColormap(['#EF9A9A', '#FFF59D', '#90CAF9'])
plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
使用多项式特征的管道的详情原理
首先生成多项式的特征,然后数据标准化,最后调用LinearSVC的方法,设置C的默认值为1.0
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline
def PolynomialSVC(degree,C=1.0):
return Pipeline([
("poly",PolynomialFeatures(degree=degree)),
("std_scaler",StandardScaler()),
("linearSVC",LinearSVC(C=C))
])
调用管道,再进行fit操作,然后将图像绘制出来
poly_svc = PolynomialSVC(degree=3)
poly_svc.fit(X,y)
plot_decision_boundary(poly_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
图像如下(可以看出来,边界变成了曲线,说明将结果转换成了一个高维的有多项式项特征的数据以后在使用linearSVM中)
其实SVM有一种特殊的方式,可以直接使用多项式特征,这种称为多项式和,想要使用这种方式,就要调用SVC这个类,先定义一个函数,在这种情况下,只需要两步,第一步对数据进行标准化,第二步实例化一个SVC对象,使用SVC函数,就需要传入一个参数kernel,其中传入一个字符串poly,这样就会自动对传入的数据进行多项式化,进行训练
from sklearn.svm import SVC
def PolynomialKernelSVC(degree,C=1.0):
return Pipeline([
("std_scaler",StandardScaler()),
("kernelSVC",SVC(kernel="poly",degree=degree,C=C))
])
调用函数,并进行训练,然后绘制出图像
poly_kernel_svc = PolynomialKernelSVC(degree=3)
poly_kernel_svc.fit(X,y)
plot_decision_boundary(poly_kernel_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
图像如下
以上就是SVM的两种多项式计算的方式
【笔记】sklearn中的SVM以及使用多项式特征以及核函数的更多相关文章
- sklearn中的SVM
scikit-learn中SVM的算法库分为两类,一类是分类的算法库,包括SVC, NuSVC,和LinearSVC 3个类.另一类是回归算法库,包括SVR, NuSVR,和LinearSVR 3个类 ...
- 机器学习:SVM(非线性数据分类:SVM中使用多项式特征和核函数SVC)
一.基础理解 数据:线性数据.非线性数据: 线性数据:线性相关.非线性相关:(非线性相关的数据不一定是非线性数据) 1)SVM 解决非线性数据分类的方法 方法一: 多项式思维:扩充原本的数据,制造新的 ...
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
- 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介
1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...
- sklearn中SVM调参说明
写在前面 之前只停留在理论上,没有实际沉下心去调参,实际去做了后,发现调参是个大工程(玄学).于是这篇来总结一下sklearn中svm的参数说明以及调参经验.方便以后查询和回忆. 常用核函数 1.li ...
- 【笔记】多项式回归的思想以及在sklearn中使用多项式回归和pipeline
多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时 ...
- sklearn中常用数据预处理方法
1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计 ...
- sklearn集成支持向量机svm.SVC参数说明
经常用到sklearn中的SVC函数,这里把文档中的参数翻译了一些,以备不时之需. 本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: libsvm中的二次规划问题的解 ...
- Python数模笔记-Sklearn(4)线性回归
1.什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系.回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利 ...
随机推荐
- 修改MySQL时区
说明: 1.Windows版本暂无发现问题 2.CentOS-Docker版本需要修改时区 通过sql命令临时修改 mysql> set global time_zone = '+8:00'; ...
- CentOS-Docker搭建Nextcloud
下载镜像 $ docker pull nextcloud 运行镜像 $ docker run -d --restart=unless-stopped --name nextcloud -v /home ...
- CentOS查看和修改PATH环境变量的方法 (转)
查看PATH:echo $PATH以添加mongodb server为列修改方法一:export PATH=/usr/local/mongodb/bin:$PATH//配置完后可以通过echo $ ...
- 元素类型为 "configuration" 的内容必须匹配 "(properties?,settings?,typeAliases?,typeHandlers?
报错主要部分如下: Error building SqlSession.### Cause: org.apache.ibatis.builder.BuilderException: Error cre ...
- 报错处理:end Kernel panic - not syncing: Out of memory and no killable processes
报错如下: end Kernel panic - not syncing: Out of memory and no killable processes [ 2.113892] [<fffff ...
- Spring Boot 2.x基础教程:使用@Scheduled实现定时任务
我们在编写Spring Boot应用中经常会遇到这样的场景,比如:我需要定时地发送一些短信.邮件之类的操作,也可能会定时地检查和监控一些标志.参数等. 创建定时任务 在Spring Boot中编写定时 ...
- Linux | 命令的参数
命令的参数 格式:command parameters --> 命令参数 短参数 在短参数中,字母的大写效果是不同的,比如大写 T 和小写 t 的含义通常是不同的. 一个短参数 最常用的参数形式 ...
- keeplived+mycat+mysql高可用读写分离水平分表(谁看谁都会)
一:环境准备: 应用 主机 mysql-master 192.168.205.184 mysql-slave 192.168.205.185 mycat-01,keeplived,jdk 192.16 ...
- Day9 数组 冒泡排序及稀疏数组!
数组 数组是相同类型数据的有序集合. 数组描述的是相同类型的若干个数据,按照一定的先后次序排列组合而成. 其中,每一个数据称作一个数组元素,每个数组元素可以通过一个下标来访问它们.(下标从0开始) 数 ...
- Linux下Apache(HTTP)基础知识梳理-运维笔记
HTTP介绍: HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传 ...