Flume对接Kafka
一.简单实现
需求:根据 flume
监控 exec
文件的追加数据,写入 kafka
的 test-demo
分区,然后启用 kafka-consumer
消费 test-demo
分区数据。
需求分析
1)flume的配置文件
在hadoop102上创建flume的配置文件
# define
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/testdata/3.txt
# sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
#kafka的broker主机和端口
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
#kafka sink发送数据的topic
a1.sinks.k1.kafka.topic = test-demo
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
2)启动 zk
、kafka
集群
3)创建 test-demo
主题
bin/kafka-topics.sh --create --bootstrap-server hadoop102:9092 --topic test-demo --partitions 2 --replication-factor 2
4)启动 kafka consumer
去消费 test-demo
主题
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic test-demo
aaa
5)启动 flume
,并且往 3.txt
中追加数据
bin/flume-ng agent -c conf/ -f job/flume-kafka/flume-exec-kafka.conf -n a1
echo hello >> /opt/module/testdata/3.txt
6)观察 kafka consumer
的消费情况
二.自定义interceptor(使用kafka sink)
需求:flume
监控 exec
文件的追加数据,将flume采集的数据按照不同的类型输入到不同的topic中
将日志数据中带有的 hello
的,输入到kafka的 first
主题中,
将日志数据中带有 good
的,输入到kafka的 second
主题中,
其他的数据输入到kafka的 third
主题中
需求分析
通过自定义 flume
的拦截器,往 header
增加 topic
信息 ,配置文件中 kafka sink
增加 topic
配置,实现将数据按照指定 topic
发送。
1)自定义 flume
拦截器
创建工程,pom依赖
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.9.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>
自定义拦截器类,并打包上传至/opt/module/flume/lib包下
package com.bigdata.intercepter;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
/**
* @description: TODO 自定义flume拦截器
* @author: HaoWu
* @create: 2020/7/7 20:32
*/
public class FlumeKafkaInterceptorDemo implements Interceptor {
private List<Event> events;
//初始化
@Override
public void initialize() {
events = new ArrayList<>();
}
@Override
public Event intercept(Event event) {
// 获取event的header
Map<String, String> header = event.getHeaders();
// 获取event的boby
String body = new String(event.getBody());
// 根据body中的数据设置header
if (body.contains("hello")) {
header.put("topic", "first");
} else if (body.contains("good")) {
header.put("topic", "second");
}
return event;
}
@Override
public List<Event> intercept(List<Event> events) {
// 对每次批数据进来清空events
events.clear();
// 循环处理单个event
for (Event event : events) {
events.add(intercept(event));
}
return events;
}
@Override
public void close() {
}
// 静态内部类创建自定义拦截器对象
public static class Builder implements Interceptor.Builder{
@Override
public Interceptor build() {
return new FlumeKafkaInterceptorDemo();
}
@Override
public void configure(Context context) {
}
}
}
2)编写 flume
的配置文件
flume-netstat-kafka.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
#Interceptor
a1.sources.r1.interceptors = i1
#自定义拦截器全类名+$Builder
a1.sources.r1.interceptors.i1.type = com.bigdata.intercepter.FlumeKafkaInterceptorDemo$Builder
# Describe the sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
#默认发往的topic
a1.sinks.k1.kafka.topic = third
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
# # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
3)创建topic
在kafka中创建 first
, second
, third
这3个topic
[hadoop@hadoop102 kafka]$ bin/kafka-topics.sh --list --bootstrap-server hadoop102:9092
__consumer_offsets
first
second
test-demo
third
4)启动各组件
启动3个 kafka consumer
分别消费 first
, second
, third
中的数据
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic second
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic third
5)启动 flume
,通过netstat
发送数据到flume
bin/flume-ng agent -c conf/ -f job/flume-kafka/flume-netstat-kafka.conf -n a1
nc localhost 44444
6)观察消费者的消费情况
三.自定义interceptor(使用kafka channel)
需求:使用taildir source监控/opt/module/applog/log文件夹下的文件,使用拦截器过滤非json的数据,使用kafka channel对接 kafka,将数据发往指定topic。
需求分析
使用kafka channel不需要sink
1)自定义拦截器
创建maven工程
pom文件
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.62</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
编写拦截器类:ETLInterceptor.java
package com.bigdata;
import com.alibaba.fastjson.JSON;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.util.Iterator;
import java.util.List;
/**
* @description: TODO 自定义拦截器,简单的ETL清洗
* @author: HaoWu
* @create: 2020/7/10 18:14
*/
public class ETLInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
String s = new String(event.getBody());
try {
JSON.toJSON(s);
return event;
} catch (Exception e) {
return null;
}
}
@Override
public List<Event> intercept(List<Event> events) {
Iterator<Event> iterator = events.iterator();
while (iterator.hasNext()){
Event e = iterator.next();
if(e==null){
iterator.remove();
}
}
return events;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder{
@Override
public Interceptor build() {
return new ETLInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
打包,将有依赖的包上传到%Flume_HOME%/lib目录下
2)flume配置
bigdata-applog-kafka.conf
#描述agent
a1.sources = r1
a1.channels = c1
#描述source
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /opt/module/flume/taildir_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/module/applog/log/app.*
#拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.bigdata.ETLInterceptor$Builder
#描述channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.channels.c1.kafka.topic = applog
a1.channels.c1.parseAsFlumeEvent = false
#关联source->channel->sink
a1.sources.r1.channels = c1
3)启动各组件
启动zookeeper、kafka-->启动消费者消费applog主题-->启动flume-->观察消费者
#消费者消费applog
kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic applog --from-beginning
#启动flume
bin/flume-ng agent -n a1 -c conf/ -f job/bigdata-applog-kafka.conf
consumer消费到数据
Flume对接Kafka的更多相关文章
- 基于Flume+LOG4J+Kafka的日志采集架构方案
本文将会介绍如何使用 Flume.log4j.Kafka进行规范的日志采集. Flume 基本概念 Flume是一个完善.强大的日志采集工具,关于它的配置,在网上有很多现成的例子和资料,这里仅做简单说 ...
- Flume+LOG4J+Kafka
基于Flume+LOG4J+Kafka的日志采集架构方案 本文将会介绍如何使用 Flume.log4j.Kafka进行规范的日志采集. Flume 基本概念 Flume是一个完善.强大的日志采集工具, ...
- 大数据平台架构(flume+kafka+hbase+ELK+storm+redis+mysql)
上次实现了flume+kafka+hbase+ELK:http://www.cnblogs.com/super-d2/p/5486739.html 这次我们可以加上storm: storm-0.9.5 ...
- Kafka实战-Flume到Kafka
1.概述 前面给大家介绍了整个Kafka项目的开发流程,今天给大家分享Kafka如何获取数据源,即Kafka生产数据.下面是今天要分享的目录: 数据来源 Flume到Kafka 数据源加载 预览 下面 ...
- flume+kafka+hbase+ELK
一.架构方案如下图: 二.各个组件的安装方案如下: 1).zookeeper+kafka http://www.cnblogs.com/super-d2/p/4534323.html 2)hbase ...
- flume到kafka和hbase配置
# Flume test file# Listens via Avro RPC on port 41414 and dumps data received to the logagent.channe ...
- flume从kafka中读取数据
a1.sources = r1 a1.sinks = k1 a1.channels = c1 #使用内置kafka source a1.sources.r1.type = org.apache.flu ...
- flume整合kafka
# Please paste flume.conf here. Example: # Sources, channels, and sinks are defined per # agent name ...
- spark streaming 对接kafka记录
spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede ...
随机推荐
- TypeError: Error when calling the metaclass bases Cannot create a consistent method resolution
Python Error when calling the metaclass bases Cannot create a consistent method resolution order (MR ...
- cf12E Start of the season(构造,,,)
题意: 给一个偶数N. 构造出一个矩阵. 满足:主对角线上全为0.每一行是0~N-1的一个全排列.矩阵关于主对角线对称. 思路: 觉得是智商题,,,,看完题解后觉得不难,但是我就是没想出来.只想到了前 ...
- Get value from agent failed: cannot connect to [[127.0.0.1]:10050]: [111] Connection refused
zabbix 监控连接失败 1.查看配置文件端口,server端口10051开启正常,agent端10050开启正常 2.查看/var/log/zabbix/zabbix_server.log./va ...
- prometheus(1)之核心概念
个人理解:prometheus核心在于 1.prom数据类型的理解 (4钟数据类型 与常用的promQL语法 其实很容易) 2.各种服务发现与正则拼接(服务发现的拼接其实官方定义好的 理解就行) 3. ...
- 为何我中断执行的线程不起作用,Why
摘要:我们就以一个案例的形式,来为大家详细介绍下为何中断执行的线程不起作用. 本文分享自华为云社区<明明中断了线程,却为何不起作用呢?>,作者:冰 河. 当我们在调用Java对象的wait ...
- Git基本教程
git的发展 Git 两周开发 Linus开发,主要是为了管理大量人员维护代码 Git分布式版本控制系统 基本命令 history:查看之前用过的命令 vimtutor git配置 查看配置 git ...
- 在 Node.js 中处理大 JSON 文件
在 Node.js 中处理大 JSON 文件 场景描述 问题一: 假设现在有一个场景,有一个大的 JSON 文件,需要读取每一条数据经过处理之后输出到一个文件或生成报表数据,怎么能够流式的每次读取一条 ...
- mysql查询报错this is incompatible with sql_mode=only_full_group_by
临时改法:select @@GLOBAL.sql_mode;查询当前mysql的模式去掉ONLY_FULL_GROUP_BY重新设置:set @@GLOBAL.sql_mode='STRICT_TRA ...
- Beyond compare 4.2.3 激活和秘钥
安装完 Beyond Compare 4.2.3 以后.打开输入密匙是不是会跳到官网去?不用慌,我们只需要删除你安装Beyond Compare 4目录下的 BCUnrar.dll 文件,然后再打开就 ...
- Java中禁止浏览器开启缓存的方法命令
响应头里添加禁止浏览器缓存的内容 Cache-Control: no-cache, no-store, must-revalidate Pragma: no-cache Expires: 0 其中,C ...