使用Redis实现令牌桶算法
在限流算法中有一种令牌桶算法,该算法可以应对短暂的突发流量,这对于现实环境中流量不怎么均匀的情况特别有用,不会频繁的触发限流,对调用方比较友好。
例如,当前限制10qps,大多数情况下不会超过此数量,但偶尔会达到30qps,然后很快就会恢复正常,假设这种突发流量不会对系统稳定性产生影响,我们可以在一定程度上允许这种瞬时突发流量,从而为用户带来更好的可用性体验。这就是使用令牌桶算法的地方。
令牌桶算法原理
如下图所示,该算法的基本原理是:有一个容量为X的令牌桶,每Y单位时间内将Z个令牌放入该桶。如果桶中的令牌数量超过X,那么它将被丢弃。处理请求时,需要先从令牌桶中取出令牌,如果拿到了令牌,则继续处理;如果拿不到令牌,则拒绝请求。
可以看出,在令牌桶算法中设置X,Y和Z的数量尤为重要。Z应该比每Y单位时间内的请求数稍大,系统将长时间处于此状态;X是系统允许的瞬时最大请求数,并且系统不应该长时间处于此状态,否则就会频繁触发限流,此时表明流量出现了超预期的情况,需要及时调查原因并采取相应措施。
Redis实现令牌桶算法
之前看过有些程序实现的令牌桶,其向桶中放入令牌的方法是启动一个线程,每隔Y单位时间增加一次令牌数量,或者在Timer中定时执行这一过程。我不太满意这种方法, 原因有二,一是浪费线程资源,二是因为调度的问题执行时间不精确。
这里确定令牌桶中令牌数量的方法是通过计算得出,首先算出从上次请求到这次请求经过了多长时间,是否达到发令牌的时间阈值,然后增加的令牌数是多少,这些令牌能够放到桶中的是多少。
Talk is cheap!
下边就来看看Redis中怎么实现的,因为涉及到多次与Redis的交互,这里为了提高限流处理的吞吐量,减少程序与Redis的交互次数,采用了Redis支持的Lua script,Lua script的执行是原子的,所以也不用担心出现脏数据的问题。
代码节选自 FireflySoft.RateLimit ,它不仅支持普通主从部署Redis,还支持集群Redis,所以吞吐量可以通过水平扩展的方式进行提升。为了方便阅读,这里增加一些注释,实际是没有的。
-- 定义返回值,是个数组,包含:是否触发限流(1限流 0通过)、当前桶中的令牌数
local ret={}
ret[1]=0
-- Redis集群分片Key,KEYS[1]是限流目标
local cl_key = '{' .. KEYS[1] .. '}'
-- 获取限流惩罚的当前设置,触发限流惩罚时会写一个有过期时间的KV
-- 如果存在限流惩罚,则返回结果[1,-1]
local lock_key=cl_key .. '-lock'
local lock_val=redis.call('get',lock_key)
if lock_val == '1' then
ret[1]=1
ret[2]=-1
return ret;
end
-- 这里省略部分代码
-- 获取[上次向桶中投放令牌的时间],如果没有设置过这个投放时间,则令牌桶也不存在,此时:
-- 一种情况是:首次执行,此时定义令牌桶就是满的。
-- 另一种情况是:较长时间没有执行过限流处理,导致承载这个时间的KV被释放了,
-- 这个过期时间会超过自然投放令牌到桶中直到桶满的时间,所以令牌桶也应该是满的。
local last_time=redis.call('get',st_key)
if(last_time==false)
then
-- 本次执行后剩余令牌数量:桶的容量- 本次执行消耗的令牌数量
bucket_amount = capacity - amount;
-- 将这个令牌数量更新到令牌桶中,同时这里有个过期时间,如果长时间不执行这个程序,令牌桶KV会被回收
redis.call('set',KEYS[1],bucket_amount,'PX',key_expire_time)
-- 设置[上次向桶中放入令牌的时间],后边计算应放入桶中的令牌数量时会用到
redis.call('set',st_key,start_time,'PX',key_expire_time)
-- 返回值[当前桶中的令牌数]
ret[2]=bucket_amount
-- 无需其它处理
return ret
end
-- 令牌桶存在,获取令牌桶中的当前令牌数
local current_value = redis.call('get',KEYS[1])
current_value = tonumber(current_value)
-- 判断是不是该放入新令牌到桶中了:当前时间-上次投放的时间 >= 投放的时间间隔
last_time=tonumber(last_time)
local last_time_changed=0
local past_time=current_time-last_time
if(past_time<inflow_unit)
then
-- 不到投放的时候,直接从令牌桶中取走令牌
bucket_amount=current_value-amount
else
-- 需要放入一些令牌, 预计投放数量 = (距上次投放过去的时间/投放的时间间隔)*每单位时间投放的数量
local past_inflow_unit_quantity = past_time/inflow_unit
past_inflow_unit_quantity=math.floor(past_inflow_unit_quantity)
last_time=last_time+past_inflow_unit_quantity*inflow_unit
last_time_changed=1
local past_inflow_quantity=past_inflow_unit_quantity*inflow_quantity_per_unit
bucket_amount=current_value+past_inflow_quantity-amount
end
-- 这里省略部分代码
ret[2]=bucket_amount
-- 如果桶中剩余数量小于0,则看看是否需要限流惩罚,如果需要则写入一个惩罚KV,过期时间为惩罚的秒数
if(bucket_amount<0)
then
if lock_seconds>0 then
redis.call('set',lock_key,'1','EX',lock_seconds,'NX')
end
ret[1]=1
return ret
end
-- 来到这里,代表可以成功扣减令牌,则需要更新令牌桶KV
if last_time_changed==1 then
redis.call('set',KEYS[1],bucket_amount,'PX',key_expire_time)
-- 有新投放,更新[上次投放时间]为本次投放时间
redis.call('set',st_key,last_time,'PX',key_expire_time)
else
redis.call('set',KEYS[1],bucket_amount,'PX',key_expire_time)
end
return ret
通过以上代码,可以看出,其主要处理过程是:
1、判断有没有被限流惩罚,有则直接返回,无则进入下一步。
2、判断令牌桶是否存在,不存在则先创建令牌桶,然后扣减令牌返回,存在则进入下一步。
3、判断是否需要投放令牌,不需要则直接扣减令牌,需要则先投放令牌再扣减令牌。
4、判断扣减后的令牌数,如果小于0则返回限流,同时设置限流惩罚,如果大于等于0则进入下一步。
5、更新桶中的令牌数到Redis。
你可以在任何一种开发语言的Redis库中提交并运行这段Lua script脚本,如果你使用的是.NET平台,可以参考这篇文章:ASP.NET Core中使用令牌桶限流 。
关于FireflySoft.RateLimit
FireflySoft.RateLimit 是一个基于 .NET Standard 的限流类库,其内核简单轻巧,能够灵活应对各种需求的限流场景。
其主要特点包括:
- 多种限流算法:内置固定窗口、滑动窗口、漏桶、令牌桶四种算法,还可自定义扩展。
- 多种计数存储:目前支持内存、Redis两种存储方式。
- 分布式友好:通过Redis存储支持分布式程序统一计数。
- 限流目标灵活:可以从请求中提取各种数据用于设置限流目标。
- 支持限流惩罚:可以在客户端触发限流后锁定一段时间不允许其访问。
- 动态更改规则:支持程序运行时动态更改限流规则。
- 自定义错误:可以自定义触发限流后的错误码和错误消息。
- 普适性:原则上可以满足任何需要限流的场景。
Github开源地址:https://github.com/bosima/FireflySoft.RateLimit/blob/master/README.zh-CN.md
收获更多架构知识,请关注公众号 FireflySoft 。原创内容,转载请注明出处。
使用Redis实现令牌桶算法的更多相关文章
- php 基于redis使用令牌桶算法 计数器 漏桶算法 实现流量控制
通常在高并发和大流量的情况下,一般限流是必须的.为了保证服务器正常的压力.那我们就聊一下几种限流的算法. 计数器计数器是一种最常用的一种方法,在一段时间间隔内,处理请求的数量固定的,超的就不做处理. ...
- 基于令牌桶算法实现的SpringBoot分布式无锁限流插件
本文档不会是最新的,最新的请看Github! 1.简介 基于令牌桶算法和漏桶算法实现的纳秒级分布式无锁限流插件,完美嵌入SpringBoot.SpringCloud应用,支持接口限流.方法限流.系统限 ...
- 限流10万QPS、跨域、过滤器、令牌桶算法-网关Gateway内容都在这儿
一.微服务网关Spring Cloud Gateway 1.1 导引 文中内容包含:微服务网关限流10万QPS.跨域.过滤器.令牌桶算法. 在构建微服务系统中,必不可少的技术就是网关了,从早期的Zuu ...
- 15行python代码,帮你理解令牌桶算法
本文转载自: http://www.tuicool.com/articles/aEBNRnU 在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法 ...
- flask结合令牌桶算法实现上传和下载速度限制
限流.限速: 1.针对flask的单个路由进行限流,主要场景是上传文件和下载文件的场景 2.针对整个应用进行限流,方法:利用nginx网关做限流 本文针对第一中情况,利用令牌桶算法实现: 这个方法:h ...
- RateLimiter令牌桶算法
限流,是服务或者应用对自身保护的一种手段,通过限制或者拒绝调用方的流量,来保证自身的负载. 常用的限流算法有两种:漏桶算法和令牌桶算法 漏桶算法 思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度 ...
- 令牌桶算法实现API限流
令牌桶算法( Token Bucket )和 Leaky Bucket 效果一样但方向相反的算法,更加容易理解.随着时间流逝,系统会按恒定 1/QPS 时间间隔(如果 QPS=100 ,则间隔是 10 ...
- coding++:Semaphore—RateLimiter-漏桶算法-令牌桶算法
java中对于生产者消费者模型,或者小米手机营销 1分钟卖多少台手机等都存在限流的思想在里面. 关于限流 目前存在两大类,从线程个数(jdk1.5 Semaphore)和RateLimiter速率(g ...
- coding++:RateLimiter 限流算法之漏桶算法、令牌桶算法--简介
RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类 <dependency> <groupId>com.google.guava</g ...
随机推荐
- 字符串与模式匹配算法(六):Needleman–Wunsch算法
一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于 ...
- (类)Program1.1
1 class MyClass: 2 3 i = 12345 4 5 def __init__(self): 6 self.data = "WOOWOWOWO" 7 8 def f ...
- HttpContext.Current.Request.Url 地址:获取域名
假设当前页完整地址是:http://www.test.com/aaa/bbb.aspx?id=5&name=kelli 协议名----http://域名 ---- www.test.com站 ...
- Python 字符串的encode与decode
python的str,unicode对象的encode和decode方法 python中的str对象其实就是"8-bit string" ,字节字符串,本质上类似java中的byt ...
- 第01课 OpenGL窗口(3)
接下来的代码段创建我们的OpenGL窗口.我花了很多时间来做决定是否创建固定的全屏模式这样不需要许多额外的代码,还是创建一个容易定制的友好的窗口但需要更多的代码.当然最后我选择了后者.我经常在EMai ...
- SpringCloud 2020.0.4 系列之 JWT用户鉴权
1. 概述 老话说的好:善待他人就是善待自己,虽然可能有所付出,但也能得到应有的收获. 言归正传,之前我们聊了 Gateway 组件,今天来聊一下如何使用 JWT 技术给用户授权,以及如果在 Gate ...
- Qt5 C++ GUI界面 开发环境配置 详细教程
本博客已暂停更新,需要请转新博客http://www.whbwiki.com/333.html Qt 下载 Qt 体积很大,有 1GB~3GB,官方下载通道非常慢,相信很多读者会崩溃,所以建议大家使用 ...
- CURD系统怎么做出技术含量--怎样引导面试
引子 很多朋友可能会因为自己做的工作不是特别核心或者业务简单而引起面试中没有自信.但是很多公司面试的时候是可以接受面试者之前岗位的并发量.交易量低一些的.比如我们要招聘和我们交易量同等级或者以上的出来 ...
- 学好Python不加班系列之SCRAPY爬虫框架的使用
scrapy是一个爬虫中封装好的一个明星框架.具有高性能的持久化存储,异步的数据下载,高性能的数据解析,分布式. 对于初学者来说还是需要有一定的基础作为铺垫的学习.我将从下方的思维导图中进行逐步的解析 ...
- MongoDB与MySQL效率对比
本文主要通过批量与非批量对比操作的方式介绍MongoDB的bulkWrite()方法的使用.顺带与关系型数据库MySQL进行对比,比较这两种不同类型数据库的效率.如果只是想学习bulkWrite()的 ...