解法一

引理:令一个二分图两部分别为 \(X, Y(|X| \le |Y|)\),若其存在完美匹配当且仅当 \(\forall S \subseteq X, f(S) \ge |S|\)(其中 \(f(S)\) 表示 \(S\) 连到的点集)。(即霍尔定律)

可以发现,原题要求的本质上就是最少添加几个椅子使得构成完美匹配。

那么添加的椅子能使得所有人都能选一定是最好的,故根据霍尔定律我们要求的本质上是 \(\max\limits_{S \subseteq X}{|S| - |f(S)|}\),即 \(\max\limits_{S \subseteq X} |S| - \bigcup\limits_{i \in S} [0, l_i] \cup [r_i, m]\)。

注意到并集是不好处理的,在我们知道全集的情况下可以反过来考虑求其补集的交即:\(\max\limits_{S \subseteq X} |S| + \bigcap\limits_{i \in S} [l_i, r_i] - m\)。

可以发现我们是不好直接枚举点集的,但是在枚举区间的情况下统计存在多少个包含这样区间的点有多少个是非常好统计的。

于是先预处理好每个位置包含多少个右端点和左端点然后使用前缀和容斥计算即可做到 \(\mathcal{O(n + m ^ 2)}\)。

考虑优化这个流程,只枚举左端点 \(l\) 然后动态维护所有点中左端点在 \(l\) 左侧的点所组成的点集对对于每个右端点的答案。

不难发现在左端点移动的时候只需要支持区间加和求区间最大值,使用线段树即可。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 2e5 + 5;
struct node { int l, r;} a[N];
int n, m, ans;
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
namespace ST {
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid (l + r >> 1)
struct tree { int mx, tag;} t[N << 2];
void lazy(int p, int k) { t[p].mx += k; t[p].tag += k;}
void pushup(int p) { t[p].mx = max(t[ls].mx, t[rs].mx);}
void down(int p) { lazy(ls, t[p].tag), lazy(rs, t[p].tag); t[p].tag = 0;}
void build(int p, int l, int r) {
if(l == r) { t[p].mx = l; return ;}
build(ls, l, mid), build(rs, mid + 1, r);
pushup(p);
}
void update(int p, int l, int r, int x, int y, int k) {
if(x > y) return ;
if(l >= x && r <= y) { lazy(p, k); return ;}
down(p);
if(mid >= x) update(ls, l, mid, x, y, k);
if(mid < y) update(rs, mid + 1, r, x, y, k);
pushup(p);
}
int query(int p, int l, int r, int x, int y) {
if(x > y) return 0;
if(l >= x && r <= y) return t[p].mx;
down(p); int ans = 0;
if(mid >= x) ans = max(ans, query(ls, l, mid, x, y));
if(mid < y) ans = max(ans, query(rs, mid + 1, r, x, y));
return ans;
}
}
bool cmp(node a, node b) { return a.l == b.l ? a.r > b.r : a.l < b.l;}
int main() {
n = read(), m = read() + 1;
rep(i, 1, n) a[i].l = read() + 2, a[i].r = read();
ST :: build(1, 1, m);
sort(a + 1, a + n + 1, cmp);
rep(i, 1, n) {
if(a[i].l > m || a[i].l > a[i].r) { ans = max(ans, n - m + 1); continue;}
ST :: update(1, 1, m, 1, min(a[i].r, m), 1);
ans = max(ans, ST :: query(1, 1, m, a[i].l, m) - a[i].l - m + 2);
}
printf("%d", ans);
return 0;
}

解法二

从特殊的情形出发,若只存在左端点的限制,那么我们只需将所有人按照左端点从小到大排序维护当前选到的最前位置然后贪心地让每个人选取即可。

此时出现了对于右端点的限制,可以调整上述这个贪心。

首先我们还是按照左端点排序,能选择选。

若出现不能选择的情况,那么此时 \(j\) 总是能替换掉之前选择过的一个人使得答案不变的,但显然的是不是所有情况都能替换。

近一步观察可以发现如果之前选择的 \(i\) 的 \(r_i < r_j\) 那么此时 \(j\) 替换 \(i\) 一定是更优的,因为将 \(i\) 留下放在右边的可能性比 \(j\) 大,同时为了最大化这个可能每次我们只能选择替换 \(r_i\) 最小的 \(i\),使用小根堆维护即可。

那么最后我们可以得到一个拿出来需要放置在右侧的一个序列,此时就只有右端点的限制了直接做最开始的贪心即可。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 2e5 + 5;
struct node { int l, r;} a[N];
int n, m, L, P, cnt, b[N];
priority_queue <int, vector <int>, greater <int> > Q;
bool cmp1(node a, node b) { return a.l < b.l;}
bool cmp2(int a, int b) { return a > b;}
int main() {
cin >> n >> m;
rep(i, 1, n) cin >> a[i].l >> a[i].r;
sort(a + 1, a + n + 1, cmp1);
P = 1;
rep(i, 1, n) {
if(P <= a[i].l) ++P, Q.push(a[i].r);
else {
if(!Q.empty() && a[i].r > Q.top()) b[++cnt] = Q.top(), Q.pop(), Q.push(a[i].r);
else b[++cnt] = a[i].r;
}
}
sort(b + 1, b + cnt + 1, cmp2);
L = P, P = m;
rep(i, 1, cnt) if(P >= b[i] && P >= L) --P;
printf("%d", n - (m - P + L - 1));
return 0;
}

在解法一当中,多次使用正难则反的思想,这是需要注意的解题关键。

在解法二当中,使用的是放宽条件特殊化问题之后通过调整使得其能适应原问题。

AT2645 [ARC076D] Exhausted?的更多相关文章

  1. 2017国家集训队作业[arc076d/f][Exhausted?]

    2017国家集训队作业[arc076d/f][Exhausted?] 题意: ​ 有\(N\)个人,\(M\)把椅子,给出\(...L_i.R_i\)表示第\(i\)个人可以选择编号为\(1\sim ...

  2. 【ARC076D/F】Exhausted?

    Description ​ 题目链接 Solution ​ 场上尝试使用优化建图网络流实现,结果T到怀疑人生. ​ 鉴于这是个匹配问题,考虑用贪心做一下. ​ 先退一步,想一下如果每一个人只有\([1 ...

  3. php编译 :virtual memory exhausted: Cannot allocate memory

    有时候用vps建站时需要通过编译的方式来安装主机控制面板.对于大内存的VPS来说一般问题不大,但是对于小内存,比如512MB内存的VPS来说,很有可能会出现问题,因为编译过程是一个内存消耗较大的动作. ...

  4. Cannot get a connection, pool exhausted解决办法

    http://blog.163.com/it_message/blog/static/8892051200908102032653/ 连接池(Tomcat+oracle),运行一段时间后就会出现 Ca ...

  5. Fatal error: Allowed memory size of 524288000 bytes exhausted (tried to allocate 64 bytes) in D

    Fatal error: Allowed memory size of 524288000 bytes exhausted (tried to allocate 64 bytes) in D 从数据库 ...

  6. inotify resources exhausted

    inotify resources exhausted tail -f /var/log/kubelet.log tail: inotify resources exhausted tail: ino ...

  7. 编译时:virtual memory exhausted: Cannot allocate memory

    一.问题 当安装虚拟机时系统时没有设置swap大小或设置内存太小,编译程序会出现virtual memory exhausted: Cannot allocate memory的问题,可以用swap扩 ...

  8. tomcat异常: Cannot get a connection, pool exhausted

    1 问题描述Web程序在tomcat刚开始运行时速度很快,但过一段时间后发现速度变得很慢. 检查日志输出,发现异常如下:org.apache.commons.dbcp.SQLNestedExcepti ...

  9. ASM磁盘组空间不足--ORA-15041:DISGROUP DATA space exhausted (生产库案例)

    原创作品,出自 "深蓝的blog" 博客,深蓝的blog:http://blog.csdn.net/huangyanlong/article/details/47277715 近日 ...

随机推荐

  1. 「AHOI2013」 差异

    知识点: SA,线段树,单调栈 原题面 Loj Luogu 题意简述 给定一长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示从第 \(i\) 个字符开始的后缀,求: \[\sum_{ ...

  2. RabbitMQ学习笔记五:RabbitMQ之优先级消息队列

    RabbitMQ优先级队列注意点: 1.只有当消费者不足,不能及时进行消费的情况下,优先级队列才会生效 2.RabbitMQ3.5以后才支持优先级队列 代码在博客:RabbitMQ学习笔记三:Java ...

  3. 编写Java程序,实现多线程操作同一个实例变量的操作会引发多线程并发的安全问题。

    查看本章节 查看作业目录 需求说明: 多线程操作同一个实例变量的操作会引发多线程并发的安全问题.现有 3 个线程代表 3 只猴子,对类中的一个整型变量 count(代表花的总数,共 20 朵花)进行操 ...

  4. 2.OSI各层概述

    应用层 1.用户与网络的界面,所有能和用户交互产生网络流量的程序 典型应用层服务:FTP.SMTP.HTTP 表示层 1.用于处理在两个通信系统中交换信息的标识方式 功能1:数据格式变换(翻译) 功能 ...

  5. spring boot 集群 + Nginx --- 心得

    1.前言 已经掌握了spring cloud 得使用 ,但这是在内部网络做业务 ,现在需要 在外部网络 访问内部网络 服务 ,引入了 服务端负载均衡 Nginx , Nginx 根据预定的策略 ,将请 ...

  6. Centos6.8安装并配置VNC

    一般服务器都会在IDC或云端,为了可以看到服务器的图形化界面,需要安装配置VNC,本例为Centos6.8上安装配置VNC. [root@hostname ~]#yum install -y tige ...

  7. ubuntu 18.04 安装mongodb并设为开机自启动

    导入包管理系统使用的公钥 sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 9DA31620334BD75D9DCB4 ...

  8. 解决MySQL服务器禁止远程连接的问题

    1. 改表法. 可能是你的帐号不允许从远程登陆,只能在localhost.这个时候只要在localhost的那台电脑,登入mysql后,更改 "mysql" 数据库里的 " ...

  9. 详解Scrapy的命令行工具

    接触过Scrapy的人都知道,我们很多操作是需要借助命令行来执行的,比如创建项目,运行爬虫等.所以了解和掌握这些命令对于scrapy的学习是很有帮助的! Scrapy 命令 首先,在scrapy命令中 ...

  10. asp.net core 中优雅的进行响应包装

    目录 摘要 正常响应/模型验证错误包装 实现按需禁用包装 如何让 Swagger 识别正确的响应包装 禁用默认的模型验证错误包装 使用方法以及自定义返回结构体 SourceCode && ...