bzoj的数据是真的水。。

qwq

由于本人还有很多东西不是很理解

qwq

所以这里只写一个正确的做法。

首先,我们会发现,对于你选择白色边的数目,随着数目的上涨,斜率是单调升高的。

那么这时候我们就可以考虑凸优化,也就是\(wqs\)二分来满足题目中所述的正好\(k\)条边的限制。

我们\(erf\)一个\(mid\),然后让每一个白边的权值都加上\(mid\),然后跑\(MST\),看最后的选的白色边数,是否是大于等于\(k\)的,如果是,就调大\(l\),否则调小\(r\)。

由于最小生成树选择边的时候可能有一些玄学的错误,所以我们在\(sort\)的时候,对于权值相等的边,我们优先选择白边。

那么通过\(erf\),之后,我们就能得到一个上界,也就是在当前的偏移量下,我们最多的选和1相连的边的个数。

根据\(clj\)的官方题解,这里有两个引理

对于一个图,如果存在一个最小生成树,它的白边的数量是\(x\),那么就称\(x\)是最小合法白边数。所有的最小合法白边数形成一个区间\([l,r]\)

(因为题目保证有解,所以我们只需要找到最小的\(r\)即可)

那么经过这个\(erf\),我们就能得到一个最小的\(r\)

那么我们应该怎么求整个\(MST\)的权值呢,我们会发现,对于权值相等的白边和黑边,由于题目保证有解,所以一定是会存在相互替代的关系的。

那我们可以按照之前的最小生成树的策略选白边,将其记为\(val\),最后输出\(val-k*ans\),\(ans\)表示最后的\(mid\)。

为什么是\(k\)而不是具体的选的边的数目呢?

因为题目要求正好选择\(k\)条,而我们这里实际上是把多余的白边都直接视为黑边来做了

qwqwq

那么这个题就能解决了

qwqwqwqwq

但是我根据CF125E那个题,有一个比较特殊的做法,但是套到这个这个题,我并不是很理解。qwq

这个坑还是之后再填吧

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<map>
#include<vector>
#define mk make_pair
#define pb push_back
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 4e5+1e2;
struct Edge{
int u,v,w;
int col;
};
Edge e[maxn];
int n,m;
int ans;
int l=-200,r=200;
int fa[maxn];
int find(int x)
{
if (fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
int k;
bool cmp(Edge a,Edge b)
{
if (a.w==b.w) return a.col<b.col;
return a.w<b.w;
}
int solve()
{
sort(e+1,e+1+m,cmp);
int tot=0;
for (int i=1;i<=m;i++)
{
int f1 = find(e[i].u);
int f2 = find(e[i].v);
if (f1==f2) continue;
//if(tot==k && e[i].col==0) continue;
if (e[i].col==0) ++tot;
fa[f1]=fa[f2];
}
return tot;
}
signed main()
{
n=read(),m=read();k=read();
for (int i=1;i<=m;i++)
{
e[i].u=read()+1;
e[i].v=read()+1;
e[i].w=read();
e[i].col=read();
}
while(l<=r)
{
int mid = (l+r) >> 1;
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++)
{
if (e[i].col==0) e[i].w+=mid;
}
int tmp = solve();
if (tmp<k)
{
r=mid-1;
}
else l=mid+1,ans=mid;
for (int i=1;i<=m;i++)
{
if (e[i].col==0) e[i].w-=mid;
}
}
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++)
if (e[i].col==0) e[i].w+=ans;
sort(e+1,e+1+m,cmp);
int tot=0,val=0;
for (int i=1;i<=m;i++)
{
int f1 = find(e[i].u);
int f2 = find(e[i].v);
if (f1==f2) continue;
if (e[i].col==0) ++tot;
fa[f1]=fa[f2];
val+=e[i].w;
}
cout<<val-k*ans;
return 0;
}

洛谷2619/bzoj2654 Tree(凸优化+MST)的更多相关文章

  1. BZOJ2654 & 洛谷2619:tree——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2654 https://www.luogu.org/problemnew/show/P2619 给你 ...

  2. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  3. CF125E MST company (凸优化+MST)

    qwq自闭的一个题 我来修锅辣!!!!!! 这篇题解!可以\(hack\)全网大部分的做法!!! 首先,我们可以把原图中的边,分成两类,一类是与\(1\)相连,另一类是不与\(1\)相连. 原题就转化 ...

  4. 洛谷 P5853 - [USACO19DEC]Tree Depth P(生成函数+背包)

    洛谷题面传送门 神仙题. 首先考虑一个点的深度是什么,注意到对于笛卡尔树而言直接从序列的角度计算一个点的深度是不容易的,因为这样会牵扯到序列中多个元素,需要 fixed 的东西太多,计算起来太复杂了. ...

  5. 洛谷.2619.[国家集训队2]Tree I(带权二分 Kruskal)

    题目链接 \(Description\) 给定一个无向带权连通图,每条边是黑色或白色.求一棵最小权的恰好有K条白边的生成树. \(Solution\) Kruskal是选取最小的n-1条边.而白边数有 ...

  6. [BZOJ2654]tree(二分+MST)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2654 分析:此题很奇葩,我们可以给所有白边加上一个权值mid,那么在求得的MST中白边 ...

  7. [bzoj4443] [loj#2006] [洛谷P4251] [Scoi2015]小凸玩矩阵

    Description 小凸和小方是好朋友,小方给小凸一个 \(N \times M\)( \(N \leq M\) )的矩阵 \(A\) ,要求小秃从其中选出 \(N\) 个数,其中任意两个数字不能 ...

  8. 洛谷 P3994 高速公路(斜率优化)

    题目链接 题意:给出一棵树,\(1\) 号点为根,边上有边权. 每个点有两个参数 \(p_i,q_i\) 如果你想从 \(i\) 号点到与其距离为 \(d\) 的 \(j\) 号点,那么你需花费 \( ...

  9. 洛谷P4250 [SCOI2015]小凸想跑步(半平面交)

    题面 传送门 题解 设\(p\)点坐标为\(x_p,y_p\),那么根据叉积可以算出它与\((i,i+1)\)构成的三角形的面积 为了保证\(p\)与\((0,1)\)构成的面积最小,就相当于它比其它 ...

随机推荐

  1. sublime text build system automatic ctrl/cmd+B自动选择 python2 或 python3

    背景 我同时安装了 python2 和 python3 时,python 指向 python2,python3 才是 python3 默认情况下,在 Sublime 内 Ctrl/Cmd + B 运行 ...

  2. OpenCV 之 透视 n 点问题

    透视 n 点问题,源自相机标定,是计算机视觉的经典问题,广泛应用在机器人定位.SLAM.AR/VR.摄影测量等领域 1  PnP 问题 1.1  定义 已知:相机的内参和畸变系数:世界坐标系中,n 个 ...

  3. JDK1.8源码(六)——java.util.ArrayList类

    ArrayList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了RandomAccess接口,支持快速随机访问,实际上就是通过下标序号进行快速访问,实现了Clonea ...

  4. docker一分钟搭建nginx服务器

    运行nginx服务 拉取: docker pull nginx:1.17.9 运行: docker run -d --name nginx -P 80:80 nginx:1.17.9 -d表示在后台启 ...

  5. 记录一次sql注入绕过

    目标:http://www.xxxxx.net/temp.asp?ID=10359 通过 and 1=1 and 1=2 测试发现存在拦截 首先想到 and 空格 = 可能存在触发规则 一般遇到这种情 ...

  6. 从输入 URL 到展现页面的全过程

    总体分为以下几个过程 DNS解析 TCP连接 发送HTTP请求 服务器处理请求并返回HTTP报文 浏览器解析渲染页面 连接结束 DNS解析 域名到ip地址转换 TCP连接 HTTP连接是基于TCP连接 ...

  7. 动态规划精讲(一)LC最长公共子序列

    P1439 [模板]最长公共子序列 题目描述 给出1,2,-,n 的两个排列P1​ 和P2​ ,求它们的最长公共子序列. 输入格式 第一行是一个数 n. 接下来两行,每行为 n 个数,为自然数 1,2 ...

  8. Android Studio找不到设备,解决adb占用问题的方法

    使用as连接真机时,找不到设备,发现 D:\Android\Sdk\platform-tools\adb.exe start-server' failed -- run manually if nec ...

  9. 【C++基础教程】第二课

    一,上次的课后练习答案 1,输出1+2=3 2,输出2 2.25 2.25 2.25 3,第一空iostream或bits/stdc++.h 第二空main(),main(void)或main(int ...

  10. 网站URL Rewrite(伪静态)设置方法

    1.如果您的服务器支持.htaccess,则无需设置,网站根目录下的.htaccess已经设置好规则.规则详情:http://download.destoon.com/rewrite/htaccess ...