Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015.

监督学习非常依赖标签数据, 但是获得大量的标签数据在现实中是代价昂贵的一件事情, 这也是为何半监督和无监督重要的原因.

本文提出一种利用GRL来进行domain adaptation的方法, 感觉本文的创新点还是更加偏重于结构一点.

主要内容

接下来的叙述的方式可能和原文的有一点点的出入.

首先整个网络的框架包括一个用于提取特征的\(G_f\), 可见其是共享的, 提取的到的特征会分别进入上下两个\(G_c, G_d\).

其中, \(G_c\) 是普通的分类器, 当然这要求最开始的输入我们是有对应的标签的, \(G_f + G_c\)也就是我们最后所需要的整个网络.

而\(G_d\)的最后是一个二分类器, 用于区别输入的样本是来自有标签的数据集还是目标数据集.

我们来看一下损失

\[\sum_{i=1\cdots N, d_i=0} \mathcal{L}_y^i (\theta_f, \theta_c) + \lambda \cdot \sum_{i=1\cdots N} \mathcal{L}_{d}^i (\theta_f, \theta_d)
\]

首先关于\(G_f, G_c\)最小化\(\mathcal{L}_y\), 关于\(G_d\)则是最小化\(\mathcal{L}_d\), 同时关于\(G_f\)最大化\(\mathcal{L}_d\).

直观上讲就是, 我们要求\(G_f\)提取的特征使得分类器能够区分出输入的类别, 而下半部分则是一种对抗的思想, \(G_f\)提取的特征希望\(G_d\)不能够区别出输入来自有标签的域还是目标域, 对应的\(G_d\)是努力去区别开来.

为了实现这一点, 本文利用了一种GRL的技术, 即梯度从\(G_d\)回传到\(G_f\)的时候会变换梯度的方向.

代码

import torch
from torch.autograd import Function class RevGrad(Function): @staticmethod
def forward(ctx, inputs):
return inputs @staticmethod
def backward(ctx, grad_outputs):
return grad_outputs.neg()

Unsupervised Domain Adaptation by Backpropagation的更多相关文章

  1. 论文笔记:Unsupervised Domain Adaptation by Backpropagation

    14年9月份挂出来的文章,基本思想就是用对抗训练的方法来学习domain invariant的特征表示.方法也很只管,在网络的某一层特征之后接一个判别网络,负责预测特征所属的domain,而后特征提取 ...

  2. Deep Transfer Network: Unsupervised Domain Adaptation

    转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道D ...

  3. Unsupervised Domain Adaptation Via Domain Adversarial Training For Speaker Recognition

    年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        

  4. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  5. Domain Adaptation (1)选题讲解

    1 所选论文 论文题目: <Unsupervised Domain Adaptation with Residual Transfer Networks> 论文信息: NIPS2016, ...

  6. 关于模式识别中的domain generalization 和 domain adaptation

    今晚听了李文博士的报告"Domain Generalization and Adaptation using Low-Rank Examplar Classifiers",讲的很精 ...

  7. 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

    paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...

  8. 【论文笔记】Domain Adaptation via Transfer Component Analysis

    论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...

  9. 域适应(Domain adaptation)

    定义 在迁移学习中, 当源域和目标的数据分布不同 ,但两个任务相同时,这种 特殊 的迁移学习 叫做域适应 (Domain Adaptation). Domain adaptation有哪些实现手段呢? ...

随机推荐

  1. 断言(assert)简介

    java中的断言assert的使用 一.assertion的意义和用法 J2SE 1.4在语言上提供了一个新特性,就是assertion功能,他是该版本再Java语言方面最大的革新. 从理论上来说,通 ...

  2. Android 百度地图用法

    一.展示百度地图,并将一个指定的点(根据经纬度确定)展示在手机屏幕中心 1.下载百度地图移动版API(Android)开发包 要在Android应用中使用百度地图API,就要在工程中引入百度地图API ...

  3. iBatis查询时报"列名无效"或"找不到栏位名称"无列名的错误原因及解决方法

    iBatis会自动缓存每条查询语句的列名映射,对于动态查询字段或分页查询等queryForPage, queryForList,就可能产生"列名无效".rs.getObject(o ...

  4. JAVA序列化浅析

    java.io.Serializable浅析 Java API中java.io.Serializable接口源码: 1 public interface Serializable { 2 } 类通过实 ...

  5. mybatis中返回自动生成的id

    当有时我们插入一条数据时,由于id很可能是自动生成的,如果我们想要返回这条刚插入的id怎么办呢. 在mysql数据中我们可以在insert下添加一个selectKey用以指定返回的类型和值:     ...

  6. 阿里云esc 安装 docker

    1. 更新 yum 到最新: yum update (用 root 用户登录,无需加 sudo,如果不是,需要加,即  yum update ) 2. 安装软件包:yum-util(提供 yum-co ...

  7. IIS 发布 WebService 连接DB2数据库报错如下图

    环境描述: 系统环境: Windows Server 2012 R2      IIS版本:IIS 6.2      C#环境:.NET Framework 4  DB2版本:9.7.500.702 ...

  8. Unity实现“笼中窥梦”的渲染效果

    效果 思路 5个面用5个RenderTexture来接受5个摄像机分别获取的小场景图像: RenderTexture就当成屏幕来理解,MainCamera是把画面显示在屏幕上,屏幕就是最大的Rende ...

  9. 企业级BI是自研还是采购?

    企业级BI是自研还是采购? 上一篇<企业级BI为什么这么难做?>,谈到了企业级BI项目所具有的特殊背景,以及在"破局"方面的一点思考,其中谈论的焦点主要是在IT开发项目 ...

  10. pipeline parameters指令

    目录 一.简介 二.类型 参数类型 多参数 一.简介 参数化pipeline是指通过传参来决定pipeline的行为.参数化让写pipeline就像写函数,而函数意味着可重用.更抽象.所以,通常使用参 ...