Solution -「AGC 019F」「AT 2705」Yes or No
\(\mathcal{Description}\)
Link.
有 \(n+m\) 个问题,其中 \(n\) 个答案为 yes,\(m\) 个答案为 no。每次你需要回答一个问题,然后得知这个问题的正确答案。求最优策略下期望答对的题数。
\(n,m\le5\times10^5\)。
\(\mathcal{Solution}\)
显然贪心策略:当 \(n\not=m\),猜较多的答案。
设 \(n>m\),无脑猜 yes,就一定能答对 \(n\) 道题。那么所有 \(n\not=m\) 的情形下,猜对的期望次数之和就是 \(n\)。接下来只需要考虑 \(n=m\) 时的贡献。
其实 OEIS 能找到 www。首先,\(n=m\) 时,猜中的概率显然为 \(\frac{1}2\)。那么贡献次数呢?考虑成一张为网格图,从 \((0,0)\) 向下或向右走,走到 \((n,m)\),求进过 \((i,i)\) 的概率。这就是经典的组合数问题嘛。综上,答案为:
\]
求出来就好啦,复杂度 \(\mathcal O(n+m)\)。
\(\mathcal{Code}\)
#include <cstdio>
const int MAXN = 5e5, MOD = 998244353;
int n, m, fac[MAXN * 2 + 5], ifac[MAXN * 2 + 5];
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
inline void init ( const int n ) {
fac[0] = 1;
for ( int i = 1; i <= n; ++ i ) fac[i] = 1ll * i * fac[i - 1] % MOD;
ifac[n] = qkpow ( fac[n], MOD - 2 );
for ( int i = n - 1; ~ i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % MOD;
}
inline int C ( const int n, const int m ) {
return n < m ? 0 : 1ll * fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
}
int main () {
scanf ( "%d %d", &n, &m );
if ( n < m ) n ^= m ^= n ^= m;
init ( n + m );
int ans = n, inv = ( MOD + 1ll ) / 2 * qkpow ( C ( n + m, n ), MOD - 2 ) % MOD;
for ( int i = 1; i <= m; ++ i ) {
ans = ( ans + 1ll * inv * C ( 2 * i, i ) % MOD * C ( n + m - 2 * i, n - i ) ) % MOD;
}
printf ( "%d\n", ans );
return 0;
}
Solution -「AGC 019F」「AT 2705」Yes or No的更多相关文章
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇
http://www.4gamer.net/games/216/G021678/20140714079/ 连载第2回的本回, Arc System Works开发的格斗游戏「GUILTY G ...
- Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory
Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...
- SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法
用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...
- 「Windows MFC 」「Edit Control」 控件
「Windows MFC 」「Edit Control」 控件
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
随机推荐
- [ Flask ] myblog_flask问题集(RESTfull风格)
VUE问题 前端VUE怎么捕获所有404NOT FOUND的路由呢? [ 解决方案 ] vue-router路由守卫,参考文档:动态路由匹配 对于路由.../edit/<id>,自己能编辑 ...
- 新增访客数量MR统计之Reduce和Runner相关准备
关注公众号:分享电脑学习回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)云盘目录说明:tools目录是安装包res 目录是每一个课件对应的代码和资源等doc 目录是一 ...
- POJ 2387 Til the Cows Come Home (最短路径 模版题 三种解法)
原题链接:Til the Cows Come Home 题目大意:有 个点,给出从 点到 点的距离并且 和 是互相可以抵达的,问从 到 的最短距离. 题目分析:这是一道典型的最短路径模版 ...
- JUC并发编程与高性能内存队列disruptor实战-下
并发理论 JMM 概述 Java Memory Model缩写为JMM,直译为Java内存模型,定义了一套在多线程读写共享数据时(成员变量.数组)时,对数据的可见性.有序性和原子性的规则和保障:JMM ...
- Java Selenide 介绍&使用
目录 Selenide 介绍 官方快速入门 元素定位 元素操作 浏览器操作 断言 常用配置 Selenide 和 Webdriver 对比 Selenide 介绍 Selenide github Se ...
- 实习之bii--源码安装bind9
刚学习linux时安装过fctix小企鹅输入法,那个比这个安装还要复杂,不过在这里也写一写,还是用的./configure make makeinstall这套命令.不像fctix有些高版本开始用cm ...
- vue文档1-VSCode介绍
开发工具VSCode: Vue的开发工具用的是VSCode(Visual Studio Code),这款开发工具是微软官方出品,开源,免费,并且功能相当强大,使用者很多,插件相当丰富,是Vue开发的不 ...
- 学习JAVAWEB第七天
## Bootstrap: 1. 概念: 一个前端开发的框架,Bootstrap,来自 Twitter,是目前很受欢迎的前端框架.Bootstrap 是基于 HTML.CSS.JavaScript 的 ...
- 体验 正式发布 的OSM v1.0.0 版本
2021年10月份发布了OSM 1.0 RC[1],在过去的几个月里,OSM 的贡献者一直在努力为 v1.0.0 版本的发布做准备.2022年2月1日,OSM 团队正式发布 1.0.0 版本[2]. ...
- 计算机网络再次整理————UDP例子[六]
前言 简单的说,UDP 没有 TCP 用的广泛,但是还有很多是基于UDP的程序的,故而简单介绍一下. 正文 秉承节约脑容量的问题,只做简单的介绍和例子,因为自己几乎也没怎么用过UDP. 只是了解和知晓 ...