Solution -「AGC 019F」「AT 2705」Yes or No
\(\mathcal{Description}\)
Link.
有 \(n+m\) 个问题,其中 \(n\) 个答案为 yes,\(m\) 个答案为 no。每次你需要回答一个问题,然后得知这个问题的正确答案。求最优策略下期望答对的题数。
\(n,m\le5\times10^5\)。
\(\mathcal{Solution}\)
显然贪心策略:当 \(n\not=m\),猜较多的答案。
设 \(n>m\),无脑猜 yes,就一定能答对 \(n\) 道题。那么所有 \(n\not=m\) 的情形下,猜对的期望次数之和就是 \(n\)。接下来只需要考虑 \(n=m\) 时的贡献。
其实 OEIS 能找到 www。首先,\(n=m\) 时,猜中的概率显然为 \(\frac{1}2\)。那么贡献次数呢?考虑成一张为网格图,从 \((0,0)\) 向下或向右走,走到 \((n,m)\),求进过 \((i,i)\) 的概率。这就是经典的组合数问题嘛。综上,答案为:
\]
求出来就好啦,复杂度 \(\mathcal O(n+m)\)。
\(\mathcal{Code}\)
#include <cstdio>
const int MAXN = 5e5, MOD = 998244353;
int n, m, fac[MAXN * 2 + 5], ifac[MAXN * 2 + 5];
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
inline void init ( const int n ) {
fac[0] = 1;
for ( int i = 1; i <= n; ++ i ) fac[i] = 1ll * i * fac[i - 1] % MOD;
ifac[n] = qkpow ( fac[n], MOD - 2 );
for ( int i = n - 1; ~ i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % MOD;
}
inline int C ( const int n, const int m ) {
return n < m ? 0 : 1ll * fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
}
int main () {
scanf ( "%d %d", &n, &m );
if ( n < m ) n ^= m ^= n ^= m;
init ( n + m );
int ans = n, inv = ( MOD + 1ll ) / 2 * qkpow ( C ( n + m, n ), MOD - 2 ) % MOD;
for ( int i = 1; i <= m; ++ i ) {
ans = ( ans + 1ll * inv * C ( 2 * i, i ) % MOD * C ( n + m - 2 * i, n - i ) ) % MOD;
}
printf ( "%d\n", ans );
return 0;
}
Solution -「AGC 019F」「AT 2705」Yes or No的更多相关文章
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇
http://www.4gamer.net/games/216/G021678/20140714079/ 连载第2回的本回, Arc System Works开发的格斗游戏「GUILTY G ...
- Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory
Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...
- SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法
用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...
- 「Windows MFC 」「Edit Control」 控件
「Windows MFC 」「Edit Control」 控件
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
随机推荐
- python极简教程04:进程和线程
测试奇谭,BUG不见. 大家好,我是谭叔. 这一场,主讲python的进程和线程. 目的:掌握初学必须的进程和线程知识. 进程和线程的区别和联系 终于开始加深难度,来到进程和线程的知识点~ 单就这两个 ...
- 【hexo指南】hexo配置ER图流程图时序图插件
偏技术的文章有时会用到各种图形,一般来说可以做好图然后截图放到文章中就好了,虽然但图片本身也很小,但存一大堆图片占用空间总觉得不是很好. mermaid mermaid官方网站 mermaid支持很多 ...
- 【Java】多态性
文章目录 多态性 向下转型 多态性 可以理解为一个事物的多种形态. 对象的多态性:父类的引用指向子类的对象.只适用于方法,不适用于属性(编译和运行都看左边) 总结:对于对象的多态性,编译,看左边:运行 ...
- Python-多线程及生产者与消费者
一.前置知识 1. 队列基础 如果不指定队列是什么,请自行查阅 在Python中,队列是最常用的线程间的通信方法,因为它是线程安全的 from queue import Queue # 创建队列 # ...
- C#检测外部exe程序弹窗错误,并重启
private void button2_Click(object sender, EventArgs e) { string mainTitle = System.Configuration.Con ...
- Cesium入门2 - Cesium环境搭建及第一个示例程序
Cesium入门2 - Cesium环境搭建及第一个示例程序 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ 验 ...
- 一个BPMN流程示例带你认识项目中流程的生命周期
摘要:本文详细说明了在工作流Activiti框架中的BPMN流程定义整个运行的生命周期. 本文分享自华为云社区<本文详细说明了在工作流Activiti框架中的BPMN流程定义整个运行的生命周期& ...
- Scala统计一个文件所有单词出现的次数
1 import scala.io.Source 2 3 object WordCount extends App { 4 5 val path = "C:\\Users\\Administ ...
- 搭建服务器之www-向外提供视频服务by html5 video标签
搭建好www服务器,主要目的有两个一个是试验下,另一个是想给女朋友个惊喜,给她个带视频的网页,嘿嘿当前测试下相应功能. 1,采用html5的视频功能:bideo标签. 源码如下: <!docty ...
- 在 K8S 中快速部署 Redis Cluster & Redisinsight
Redis Cluster 部署 使用 Bitnami helm chart 在 K8S redis 命名空间中一键部署 Redis cluster . helm repo add bitnami h ...