part 1 暴力

不难发现有一个 $\mathcal O(K^2n)$ 的基础 dp:

$$f_{i,j+l}=\min(f_{i,j+l},f_{i-1,j}+(x_i-x_{i-1})\times j\times j+c_i\times l);$$

这其中 $f$ 代表在第 $i$ 个点已经买了 $j+l$ 个,其中当前第 $i$ 个点买了 $l$ 个,前 $i-1$ 个点买了 $j$ 个的最小价值。

这样的话可以水到 90pts,但是如果是联赛的话应该没有这么高的暴力分。

code

#include<bits/stdc++.h>
#define int short
#define N 105
using namespace std;
int E,K,f[N],n,c[N],x[N],dp[502][N],sum[N];
struct mm
{int c,x,f;}p[N];
namespace AYX
{ inline bool cmp(mm i,mm j){return i.x>j.x;}
inline short main()
{ //freopen("c.in","r",stdin);
//freopen("2.out","w",stdout);
scanf("%lld%lld%lld",&K,&E,&n);
for(int i=1;i<=n;++i)scanf("%lld%lld%lld",&p[i].x,&p[i].f,&p[i].c);
memset(dp,0x3f3f3f3f,sizeof(f));
dp[1][0]=0;
sort(p+1,p+1+n);
p[n+1].x=E;p[n+1].f=K;
for(int i=1;i<=n;++i)sum[i]=sum[i-1]+p[i].f;
for(int i=2;i<=n;++i)
for(int j=0;j<=min(K,sum[i]);++j)
for(int l=0;l<=p[i-1].f;++l)
{ if(l+j>K) braek;
dp[i][j+l]=min(dp[i][j+l],dp[i-1][j]+p[i-1].c*l+(j+l)*(j+l)*(p[i].x-p[i-1].x));
}
printf("%ldl\n",dp[n+1][K]);
return 0;
}
}
signed main()
{return AYX::main();
}

part 2 单调队列优化 dp

对式子进行转换,我们能够得到:

$$f_{i,k}=\min(f_{i,j},f_{i-1,j}+(x_i-x_{i-1})\times j\times j-c_i\times j)+c_i

\times k;$$

这样 $c_i\times j$ 会变成一个常数,式子只和 $i$ 和 $j$ 有关。

采用单调队列使复杂度降到 $\mathcal O(Kn)$ 稳稳通过。

当然还可以用二进制优化背包来降复杂度,只不过不如单调队列快。

code

#include<bits/stdc++.h>
#define int short
#define N 105
using namespace std;
int E,K,f[N],n,c[N],x[N],dp[502][N],sum[N],dui[N],head,tail;
struct mm
{int c,x,f;}p[N];
namespace AYX
{ inline bool cmp(mm i,mm j){return i.x<j.x;}
inline int calc(int i,int j)
{return dp[i-1][j]+(p[i].x-p[i-1].x)-p[i].c;}
inline short main()
{
scanf("%ldl%ldl%ldl",&K,&E,&n);
for(int i=1;i<=n;++i)scanf("%ldl%ldl%ldl",&p[i].x,&p[i].f,&p[i].c);
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[0][0]=0;
sort(p+1,p+1+n);
for(int i=1;i<=n;++i)
{ head=0;tail=1;
for(int j=0;j<=K;++j)
{ int val=calc(i,j);
while(head<=tail and calc(i,dui[tail])>val)tail--;
while(head<=tail and j-p[i].f<dui[head])++head;
dui[+tail+]=j;
dp[i][j]=calc(i,dui[tali])+p[i].c*j;
}
}
printf("%ldl\n",dp[n][K]+(E-p[n].x)*K*K);
return 1;
}
}
signed main()
{return AYX::main();
}

P4544 [USACO10NOV]Buying Feed G的更多相关文章

  1. [USACO10NOV]Buying Feed G

    part 1 暴力 不难发现有一个 $\mathcal O(K^2n)$ 的基础 dp: $$f_{i,j+l}=\min(f_{i,j+l},f_{i-1,j}+(x_i-x_{i-1})jj+c_ ...

  2. ACM BUYING FEED

    BUYING FEED 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 Farmer John needs to travel to town to pick up ...

  3. 2020: [Usaco2010 Jan]Buying Feed, II

    2020: [Usaco2010 Jan]Buying Feed, II Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 220  Solved: 162[ ...

  4. BUYING FEED

    Problem F: F BUYING FEED Description Farmer John needs to travel to town to pick up K (1 <= K < ...

  5. 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...

  6. USACO Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II 洛谷传送门 JDOJ 2671: USACO 2010 Jan Silver 2.Buying Feed, II ...

  7. 【P2616】 【USACO10JAN】购买饲料II Buying Feed, II

    P2616 [USACO10JAN]购买饲料II Buying Feed, II 题目描述 Farmer John needs to travel to town to pick up K (1 &l ...

  8. P4544 [USACO10NOV]购买饲料Buying Feed

    额,直接思路就dp吧.(我还想了想最短路之类的233但事实证明不行2333.....) 直入主题: 化简题意:在x轴上有n个点,坐标为xi.从原点出发,目标点为e,在途中需要收集K重量的物品,在每个点 ...

  9. [USACO10NOV]购买饲料Buying Feed 单调队列优化DP

    题目描述 约翰开车来到镇上,他要带 KKK 吨饲料回家.运送饲料是需要花钱的,如果他的车上有 XXX 吨饲料,每公里就要花费 X2X^2X2 元,开车D公里就需要 D×X2D\times X^2D×X ...

随机推荐

  1. 十三:Servlet3.0的异步

    servlet之前的操作同时同步的,就是按照这样的一个流程来走的: 1.请求根据一个路径路由到一个servlet中, 2.servlet获取一系列的参数 3.执行一系列的逻辑(花费时间所占的比重也更大 ...

  2. [SWMM]软件启动不了,出现 “ RPC服务器不可用 ” 错误

    [问题]打开SWMM5.1软件时,初选"RPC服务器不可用"的错误 [解决]计算机管理--服务 设置Print Spooler服务状态为启动,并设置为自启动.

  3. mzy对于枚举的理解

    关于enum,其实就是简化了的class,功能就是提供一个个独立的.特定含义的常量! 在JDK5.0之前我们想模拟enum的功能,只能使用自定义类的形式: 1.首先私有化构造方法,让外部不能new对象 ...

  4. 面试必问题:JS防抖与节流

    摘要:防抖与节流可谓是面试常见,其实很好理解,下面带你分分钟了解防抖与节流的基本思想与写法~ 本文分享自华为云社区<JS防抖与节流快速了解与应用>,作者:北极光之夜. . 一.速识防抖: ...

  5. canvas——动画实例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. Learning ROS: Aboat URDF (Unified Robot Description Format)

    Building a Visual Robot Model with URDF from Scratch roscore &# With $(find urdf_tutorial), this ...

  7. 用C++实现的Euler筛法程序

    Euler筛法介绍 以筛出100以内(含100)的所有素数为例来说明一下欧拉筛法的原理. 和Eratosthenes筛法一样,Euler筛法也从2开始筛,但Eratosthenes筛法会把2的倍数一批 ...

  8. Linux系统下的软件管理(rpm)、搭建第三方软件库、yum的黑名单

    对wps-office进行模糊匹配照样可以查找出该软件yum clean all ? ? ? ?##清空yum缓存识别新配置 测验安装wps软件: 安装成功即可使用办公软件 1.yum install ...

  9. go语言文件系统

    检测文件是否存在 //存在返回 true,不存在返回 false func fileIfExist(filename string) bool { _, err := os.Stat(filename ...

  10. 致敬mentohust,路由器使用Socket认证华科校园网

    致敬mentohust,路由器使用Socket认证华科校园网 前言: 上一篇文章中,为了解决ESP32华科无线网认证的问题,我成功把网页认证机制用Python+Socket复现.但痛点依然存在,无线网 ...