AT2686 [ARC080A] 4-adjacent 题解
Content
给定一个长度为 \(n\) 的数列 \(a\),请将其重新排列,使得 \(\forall i\in[1,n-1]\),都有 \(4\mid (a_i\cdot a_{i+1})\),或者报告不存在。
数据范围:\(2\leqslant n\leqslant 10^5\),\(1\leqslant a_i\leqslant 10^9\)。
Solution
简单的分类讨论题。
我们不妨在读入的时候统计出奇数的数量 \(\textit{cnt}_1\) 和 \(4\) 的倍数的数量 \(\textit{cnt}_2\),然后:
i) 当 \(\textit{cnt}_1+\textit{cnt}_2\neq n\) 时,此时除了奇数和 \(4\) 的倍数以外,还有部分不是 \(4\) 的倍数的偶数,那么它们一定只可能是 \(2\) 的倍数而不可能是 \(2^k(k\geqslant 2)\) 的倍数。因此我们在这里考虑把这些数放到后面去,前面的留给奇数和 \(4\) 的倍数,以使得相邻两个数相乘得到 \(4\) 的倍数。
那么前面的奇数和 \(4\) 的倍数怎么放呢?我们可以考虑交叉放,即先放奇数再放 \(4\) 的倍数再放奇数……或者先放 \(4\) 的倍数再放奇数再放 \(4\) 的倍数……那么最优方案下先放哪个呢?不难发现如果先放奇数的话,最坏情况下当 \(\textit{cnt}_1=\textit{cnt}_2\) 时,是可以构造出合法的排列的。否则就不行。
因此,在 i) 的情况下,只需要满足 \(\textit{cnt}_1\leqslant\textit{cnt}_2\),就能够构造出合法的排列。
ii) 当 \(\textit{cnt}_1+\textit{cnt}_2=n\) 时,此时最坏的情况无非就是 \(\textit{cnt}_1=\textit{cnt}_2+1\) 时,先全部放奇数,然后再在每两个奇数的中间放 \(4\) 的倍数,即可满足要求。
因此,在 ii) 的情况下,只需要满足 \(\textit{cnt}_1\leqslant\textit{cnt}_2+1\),就能够构造出合法的序列。
根据其实际情况分类判断一下就可以了。
Code
int n, a[100007], cntodd, cntfour;
int main() {
n = Rint;
F(int, i, 1, n) {
a[i] = Rint;
if(a[i] % 2) cntodd++;
else if(!(a[i] % 4)) cntfour++;
}
return cntodd <= cntfour || (cntodd + cntfour == n && cntodd - cntfour <= 1) ? Yes : No, 0;
}
AT2686 [ARC080A] 4-adjacent 题解的更多相关文章
- 算法与数据结构基础 - 图(Graph)
图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...
- 2014年亚洲区域赛北京赛区现场赛A,D,H,I,K题解(hdu5112,5115,5119,5220,5122)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud 下午在HDU上打了一下今年北京区域赛的重现,过了5题,看来单挑只能拿拿铜牌,呜呜. ...
- POJ 3279(Fliptile)题解
以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑 ...
- “玲珑杯”ACM比赛 Round #12题解&源码
我能说我比较傻么!就只能做一道签到题,没办法,我就先写下A题的题解&源码吧,日后补上剩余题的题解&源码吧! A ...
- usaco 2002 月赛 Fiber Communications 题解
Description Farmer John wants to connect his N (1 <= N <= 1,000) barns (numbered 1..N) with a ...
- Adjacent Bit Counts(01组合数)
Adjacent Bit Counts 4557 Adjacent Bit CountsFor a string of n bits x 1 , x 2 , x 3 ,..., x n , the a ...
- 题解——ATCoder AtCoder Grand Contest 017 B - Moderate Differences(数学,构造)
题面 B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stat ...
- leetcode & lintcode 题解
刷题备忘录,for bug-free 招行面试题--求无序数组最长连续序列的长度,这里连续指的是值连续--间隔为1,并不是数值的位置连续 问题: 给出一个未排序的整数数组,找出最长的连续元素序列的长度 ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
随机推荐
- 【Redis】(1)-- 关系型数据库与非关系型数据库
关系型数据库与非关系型数据库 2019-07-02 16:34:48 by冲冲 1. 关系型数据库 1.1 概念 关系型数据库,是指采用了关系模型来组织数据的数据库.关系模型指的就是二维表格模型, ...
- SpringCloud升级之路2020.0.x版-42.SpringCloudGateway 现有的可供分析的请求日志以及缺陷
本系列代码地址:https://github.com/JoJoTec/spring-cloud-parent 网关由于是所有外部用户请求的入口,记录这些请求中我们需要的元素,对于线上监控以及业务问题定 ...
- Codeforces 1067E - Random Forest Rank(找性质+树形 dp)
Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样 ...
- 一类巧妙利用利用失配树的序列DP
I.导入 求长度为\(\text{len}\)的包含给定连续子串\(\text{T}\)的 0/1 串的个数.(\(|T|<=15\)) 通常来说这种题目应该立刻联想到状压 DP 与取反集--这 ...
- intent.getSerializableExtra(转)
Activity之间通过Intent传递值,支持基本数据类型和String对象及它们的数组对象byte.byte[].char.char[].boolean.boolean[].short.short ...
- Linux基础——常用命令
find /grep /xargs /sort /uniq /tr /cut /paste /sed /awk......待续...... 1.find 名字查找: find . -name file ...
- R包开发过程记录
目的 走一遍R包开发过程,并发布到Github上使用. 步骤 1. 创建R包框架 Rsutdio --> File--> New Project--> New Directory - ...
- pyquery解析库的介绍和使用
### pyquery的介绍和使用 ## 测试文本 text = ''' <html><head><title>there is money</title&g ...
- Excel-单条件和多条件匹配搜索
6.[单条件匹配搜索]有两个表格(姓名列,年龄列,收入列等),从表1总表中,把表2中人员的年龄和收入匹配出来: 方法一: 公式=VLOOKUP($S2,$O$2:$Q$5,2,0) #其中最后0< ...
- C#时间选择
<script type="text/javascript" src="http://www.shicishu.com/down/WdatePicker.js&qu ...