前言:

transformer用于图像方面的应用逐渐多了起来,其主要做法是将图像进行分块,形成块序列,简单地将块直接丢进transformer中。然而这样的做法忽略了块之间的内在结构信息,为此,这篇论文提出了一种同时利用了块内部序列和块之间序列信息的transformer模型,称之为Transformer-iN-Transformer,简称TNT。

主要思想

TNT模型把一张图像分为块序列,每个块reshape为像素序列。经过线性变换可从块和像素中获得patch embedding和pixel embedding。将这两者放进堆叠的TNT block中学习。

在TNT block中由outer transformer block和inner transformer block组成。

outer transformer block负责建模patch embedding上的全局相关性,inner block负责建模pixel embedding之间的局部结构信息。通过把pixel embedding线性映射到patch embedding空间的方式来使patch embedding融合局部信息。为了保持空间信息,引入了位置编码。最后class token通过一个MLP用于分类。

通过提出的TNT模型,可以把全局和局部的结构信息建模,并提高特征表示能力。在精度和计算量方面,TNT在ImageNet和downstream 任务上有非常优异的表现。例如,TNT-S所在ImageNet top-1上在只有5.2B FLOPs的前提下实现了81.3%,比DeiT高了 1.5%。

一些细节

对照这个图,用几个公式来介绍。

MSA为Multi-head Self-Attention。

MLP为Multi Layer Perceptron。

LN为Layer Normalization。

Vec为flatten。

加号表示残差连接。

前两个公式是inner transformer block,处理块内部的信息,第三个公式是将块内部的信息通过线性映射到patch embedding空间,最后两个公式是outer transformer block,处理块之间的信息。

位置编码的方式看下面的图就足了。

模型参数量和计算量如下表所示:

Conclusion

最近把公众号(CV技术指南)所有的技术总结打包成了一个pdf,在公众号中回复关键字“技术总结”可获取。

本文来源于公众号CV技术指南的技术总结系列,更多内容请扫描文末二维码关注公众号。

CVPR2021 | 华为诺亚实验室提出Transformer in Transformer的更多相关文章

  1. 学界 | 华为诺亚方舟实验室提出新型元学习法 Meta-SGD ,在回归与分类任务中表现超群

    学界 | 华为诺亚方舟实验室提出新型元学习法 Meta-SGD ,在回归与分类任务中表现超群 机器之心发表于机器之心订阅 499 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等 ...

  2. 华为终端开放实验室Android Beta 4测试能力上线

    ​​​7月26日,Android P Beta 4发布(即Android P DP5),此版本为开发者最后一个预览版本,也预示着Android P正式版即将与大家见面. 为保证开发者在正式版本来临前做 ...

  3. 华为终端开放实验室Android P Beta 4测试能力上线

    7月26日,Android P Beta 4发布(即Android P DP5),此版本为开发者最后一个预览版本,也预示着Android P正式版即将与大家见面. 为保证开发者在正式版本来临前做好充分 ...

  4. (转)The Evolved Transformer - Enhancing Transformer with Neural Architecture Search

    The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33 ...

  5. Batch Size对神经网络训练的影响

    ​ 前言 这篇文章非常全面细致地介绍了Batch Size的相关问题.结合一些理论知识,通过大量实验,文章探讨了Batch Size的大小对模型性能的影响.如何影响以及如何缩小影响等有关内容. 本文来 ...

  6. 经典论文系列 | 缩小Anchor-based和Anchor-free检测之间差距的方法:自适应训练样本选择

    ​  前言  本文介绍一篇CVPR2020的论文,它在paperswithcode上获得了16887星,谷歌学术上有261的引用次数. 论文主要介绍了目标检测现有的研究进展.anchor-based和 ...

  7. 计算机视觉--CV技术指南文章汇总

    前言  本文汇总了过去本公众号原创的.国外博客翻译的.从其它公众号转载的.从知乎转载的等一些比较重要的文章,并按照论文分享.技术总结三个方面进行了一个简单分类.点击每篇文章标题可阅读详细内容 欢迎关注 ...

  8. 自动网络搜索(NAS)在语义分割上的应用(一)

    [摘要]本文简单介绍了NAS的发展现况和在语义分割中的应用,并且详细解读了两篇流行的work:DARTS和Auto-DeepLab. 自动网络搜索 多数神经网络结构都是基于一些成熟的backbone, ...

  9. ACNet:用于图像超分的非对称卷积网络

    编辑:Happy 首发:AIWalker Paper:https://arxiv.org/abs/2103.13634 Code:https://github.com/hellloxiaotian/A ...

随机推荐

  1. 【python+selenium的web自动化】- Selenium WebDriver原理及安装

    简单介绍 selenium ​ selenium是一个用于测试web网页的自动化测试工具,它直接运行在浏览器中,模拟用户的操作.

  2. Springboot 轻量替代框架 Solon 1.3.10 发布

    Solon 是一个微型的Java开发框架.项目从2018年启动以来,参考过大量前人作品:历时两年,4000多次的commit:内核保持0.1m的身材,超高的跑分,良好的使用体验.支持:RPC.REST ...

  3. 基于es实现一个简单的搜索引擎

    一.什么是es Elasticsearch是一个基于ApacheLucene(TM)的开源搜索引擎.无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好的.功能最全的搜索引擎库.但 ...

  4. dk.exe自动填报程序的反编译

    dk.exe自动填报程序的反编译 dk.exe用于学校每日健康报的自动填写.

  5. java 集合 的理解

    1.对象的存储:①数组(基本数据类型 & 引用数据类型) ②集合(引用数据类型) >数组存储数据的弊端:长度一旦初始化以后,就不可变:真正给数组元素赋值的个数没有现成的方法可用. 2.集 ...

  6. HDU_3746 Cyclic Nacklace 【KMP的应用】

    一.题目 HDU3746 二.分析 KMP比较好解决的一个问题:如果求一个串中的循环节? 仔细回想KMP的用法,重点是next数组,相当于就是后缀和前缀的比较,那么不正是方便了我们确定循环节? 如果以 ...

  7. Caused by: java.lang.RuntimeException: JxBrowser license check failed: No valid license found

    使用jxbrower报错,原因时证书检验失败, 解决方案: 1.首先创建证书,下面是我在IDEA maven项目中创建的位置,Java项目中在src/目录下创建, META-INF/teamdev.l ...

  8. Net Core 重要的技术点

    Net Core 重要的技术点 1.中间件概念 Asp.Net Core作为控制台应用程序启动,在Program的Main方法是入口,通过调用CreateWebHostBuilder创建WebHost ...

  9. 【java框架】SpringBoot(5)--SpringBoot整合分布式Dubbo+Zookeeper

    1.理论概述 1.1.分布式 分布式系统是若干独立计算机的集合,这些计算机对于用户来讲就像单个系统. 由多个系统集成成一个整体,提供多个功能,组合成一个板块,用户在使用上看起来是一个服务.(比如淘宝网 ...

  10. MySQL中explain语句的使用

    一.概述 在 MySQL 中,我们可以使用慢查询日志或者 show processlist 命令等方式定位到执行耗时较长的 SQL 语句,在这之后我们可以通过 EXPLAIN或者 DESC 命令获取 ...