称区间$[i,j]$为普通区间,当且仅当$j-i\ge 3$​​​且其操作两次内不会变为给定区间

结论:若$[i,j]$为普通区间,则$[i,j]$和$[i+1,j-1]$​​​​​​​​​​的状态(是否先手必胜)相同

(关于这个结论的正确性,不难分类讨论得到)

由此,对于普通区间不断缩小使其变为非普通区间,而非普通区间暴力枚举其变化,直至其长度为1或变为普通区间,显然这类区间至多只有$o(n)$个,因此记忆化后总复杂度也为$o(n)$

综上,只需要能快速实现缩小的过程即可,注意到和是相同的,以和为第一关键字,左端点为第二关键字在所有第2类的非普通区间中二分即可

(暴力的过程中判定区间是否为特殊区间也可以二分)

最终,总复杂度为$o((n+q)\log n)$​,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 600005
4 int t,n,m,q,l,r,ans[N];
5 struct Data{
6 int l,r,p;
7 bool operator < (const Data &k)const{
8 return (l+r<k.l+k.r)||(l+r==k.l+k.r)&&(l<k.l);
9 }
10 bool operator == (const Data &k)const{
11 return (l==k.l)&&(r==k.r);
12 }
13 bool operator != (const Data &k)const{
14 return (l!=k.l)||(r!=k.r);
15 }
16 }a[N],b[N];
17 int find(int l,int r){
18 Data o=Data{l,r,0};
19 int p=lower_bound(b+1,b+m+1,o)-b;
20 if ((p>m)||(b[p]!=o))return -1;
21 return p;
22 }
23 int get_nex(int l,int r){
24 Data o=Data{l,r,0};
25 int p=lower_bound(b+1,b+m+1,o)-b;
26 if ((p<=m)&&(o.l+o.r==b[p].l+b[p].r))return b[p].l-o.l;
27 return (r-l-1>>1);
28 }
29 bool calc(int l,int r){
30 int p=find(l,r);
31 if (p>0){
32 if (b[p].p>=0)return b[p].p;
33 if (ans[p]>=0)return ans[p];
34 }
35 if (l==r)return 0;
36 if ((r-l>=3)&&(p<0)){
37 p=get_nex(l,r);
38 return calc(l+p,r-p);
39 }
40 int s=((calc(l,r-1)&calc(l+1,r))^1);
41 if (p>0)ans[p]=s;
42 return s;
43 }
44 int main(){
45 scanf("%d",&t);
46 while (t--){
47 scanf("%d%d",&n,&q);
48 for(int i=1;i<=n;i++){
49 scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].p);
50 a[i+n]=Data{a[i].l-1,a[i].r,-1};
51 a[i+n*2]=Data{a[i].l-2,a[i].r,-1};
52 a[i+n*3]=Data{a[i].l,a[i].r+1,-1};
53 a[i+n*4]=Data{a[i].l,a[i].r+2,-1};
54 a[i+n*5]=Data{a[i].l-1,a[i].r+1,-1};
55 }
56 sort(a+1,a+n*6+1);
57 m=0;
58 for(int i=1;i<=n*6;i++){
59 if ((a[i].l<=0)||(a[i].r>1e9))continue;
60 if ((!m)||(b[m]!=a[i]))b[++m]=a[i];
61 else{
62 if (b[m].p<0)b[m].p=a[i].p;
63 }
64 }
65 for(int i=1;i<=m;i++)ans[i]=-1;
66 for(int i=1;i<=q;i++){
67 scanf("%d%d",&l,&r);
68 printf("%d",calc(l,r));
69 }
70 printf("\n");
71 }
72 return 0;
73 }

[hdu7035]Game的更多相关文章

随机推荐

  1. Blazor Webassembly多标签页开发

    最近准备用Blazor Webassembly做后台开发要用到多标签页,找了半天发现绝大多数都是Blazor Server的多标签没有Webassembly.没办法只能自己想办法造轮子了. 查了许多资 ...

  2. 如何通过 Serverless 轻松识别验证码?

    作者 | 江昱 来源 | Serverless 公众号 前言 Serverless 概念自被提出就倍受关注,尤其是近些年来 Serverless 焕发出了前所未有的活力,各领域的工程师都在试图将 Se ...

  3. 小数的十进制和二进数转换 “无限不循环”小数的IEEE 754表示

    十进制 -> 二进制 将整数部分和小数部分分开处理 例:3.125(10) 其整数部分为11(2) 小数部分按照下面的步骤求解: 0.125 x 2 = 0.25 取0 0.250 x 2 = ...

  4. 【转-Andrew_qian】stm32中断嵌套全攻略

    断断续续学习STM32一学期了,时间过的好快,现在对STM32F103系列单片机的中断嵌套及外部中断做一个总结,全当学习笔记.废话不多说,ARM公司的Cortex-m3 内核,支持256个中断,其中包 ...

  5. TCP 粘包 - 拆包问题及解决方案

    目录 TCP粘包拆包问题 什么是粘包 - 拆包问题 为什么存在粘包 - 拆包问题 粘包 - 拆包 演示 粘包 - 拆包 解决方案 方式一: 固定缓冲区大小 方式二: 封装请求协议 方式三: 特殊字符结 ...

  6. Windows内核开发-10-监听对象

    Windows内核开发-10-监听对象 Windows内核除了可以监听进程,线程.dll还可以监听特定的对象和注册表.这里先讲一下监听对象. 监听对象 内核提供了一种可以监听对特定的对象类型的句柄进行 ...

  7. String直接赋字符串和new String的区别

    String A="ABC"; String B=new String("ABC"); String A = "ABC";内存会去查找常量池 ...

  8. 【二食堂】Alpha - Scrum Meeting 2

    Scrum Meeting 2 例会时间:4.11 20:00 - 20:30 进度情况 组员 今日进度 明日任务4.12不开会 李健 1. 学习并成功搭建简单的网页issue2. 学习JS基础知识i ...

  9. 助你上手Vue3全家桶之Vue-Router4教程

    目录 1,前言 1,Router 2.1,跳转 2.2,打开新页面 3,Route 4,守卫 4.1,onBeforeRouteLeave 4.2,onBeforeRouteUpdate 4.3,路由 ...

  10. 关于linux的fork的一点学习总结

    最近操作系统的实验要用到fork,于是去搜索了一下资料,很幸运地在博客中找到一篇深度好文: http://blog.csdn.net/jason314/article/details/5640969 ...