SIFT算法原理+参看资料+问题issue

参考书籍——《图像局部不变性特征与描述》王永明、王贵锦著

SIFT特征点提取——详见博客:https://blog.csdn.net/lingyunxianhe/article/details/79063547

SIFT算法总结:用于图像搜索——详见博客:https://www.cnblogs.com/wishchin/p/9200312.html

问题描述及解决

1.什么叫“为了满足尺度变化的连续性”S=3?

理解:假设s=3,也就是每个塔里有3层,则k=21/s=21/3,那么按照上图可得Gauss Space和DoG space 分别有3个(s个)和2个(s-1个)分量,在DoG space中,1st-octave两项分别是σ,kσ; 2nd-octave两项分别是2σ,2kσ;由于无法比较极值,我们必须在高斯空间继续添加高斯模糊项,使得形成σ,kσ,k2σ,k3σ,k4σ这样就可以选择DoG space中的中间三项kσ,k2σ,k3σ(只有左右都有才能有极值),那么下一octave中(由上一层降采样获得)所得三项即为2kσ,2k2σ,2k3σ,其首项2kσ=24/3。刚好与上一octave末项k3σ=23/3尺度变化连续起来,所以每次要在Gaussian space添加3项,每组(塔)共S+3层图像,相应的DoG金字塔有S+2层图像。

2. 梯度问题

问题描述:梯度的计算为什么用(x+1,y)(x-1,y)(x,y+1)(x,y-1)四个坐标?

理解:

3.问题描述:P130页描述-求主方向的梯度直方图中梯度方向的范围是0到360度,直方图每10度一个柱共36个柱,而P131梯度直方图中只有8个柱,而P133梯度直方图有7个柱?

理解:计算得到梯度方向后,就要使用直方图统计特征点邻域内像素对应的梯度方向和幅值。梯度方向的直方图的横轴是梯度方向的角度(梯度方向的范围是0到360度,直方图每36度一个柱共10个柱,或者没45度一个柱共8个柱),纵轴是梯度方向对应梯度幅值的累加,在直方图的峰值就是特征点的主方向。在Lowe的论文还提到了使用高斯函数对直方图进行平滑以增强特征点近的邻域点对关键点方向的作用,并减少突变的影响。为了得到更精确的方向,通常还可以对离散的梯度直方图进行插值拟合。具体而言,关键点的方向可以由和主峰值最近的三个柱值通过抛物线插值得到。在梯度直方图中,当存在一个相当于主峰值80%能量的柱值时,则可以将这个方向认为是该特征点辅助方向。所以,一个特征点可能检测到多个方向(也可以理解为,一个特征点可能产生多个坐标、尺度相同,但是方向不同的特征点)。Lowe在论文中指出15%的关键点具有多方向,而且这些点对匹配的稳定性很关键。

注意区别种子点(子区域)的梯度直方图哦!P134:与求主方向不同,此时每个种子区域的梯度直方图在0-360之间划分为8个方向区间,每个区间为45度,即每个种子点有8个方向的梯度强度信息。
在实际的计算过程中,为了增强匹配的稳健性,Lowe建议对每个关键点使用4×4共16个种子点来描述,这样一个关键点就可以产生128维的SIFT特征向量。

SIFT算法大综合的更多相关文章

  1. OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...

  2. SIFT算法详解(转)

    http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature ...

  3. 【转】 SIFT算法详解

    尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从Davi ...

  4. SIFT算法的应用--目标识别之Bag-of-words模型

    原文:http://blog.csdn.net/v_JULY_v/article/details/6555899 SIFT算法的应用 -目标识别之用Bag-of-words模型表示一幅图像 作者:wa ...

  5. 《sift算法详解》阅读笔记

    原博客来自:http://blog.csdn.net/zddblog/article/details/7521424 定义: 尺度不变特征转化是一种计算机视觉算法,用于侦测和描述物体的局部性特征,在空 ...

  6. SIFT算法:特征描述子

    SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.确定描述子采样区域 2.生成描述子 2.1 旋 ...

  7. SIFT算法:确定特征点方向

    SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.计算邻域梯度方向和幅值 2.计算梯度方向直方图 ...

  8. SIFT算法:KeyPoint找寻、定位与优化

    SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.找寻 2.定位 3.优化 1 KeyPoint ...

  9. SIFT算法:DoG尺度空间生产

    SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.高斯尺度空间(GSS - Gauss Scal ...

随机推荐

  1. 有了这个api接口工具-微信跳转其他浏览器下载app就这么简单

    现在微信渠道可以说是拉新最快的渠道,因为微信具备强裂变性.但是目前微信对第三方下载链接的拦截是越来越严格了,那么想要在微信内肆无忌惮地推广链接就需要用到微信跳转浏览器的api接口,那如何获取该api接 ...

  2. Abaqus用Dload子程序实现移动载荷

  3. 1503.02531-Distilling the Knowledge in a Neural Network.md

    原来交叉熵还有一个tempature,这个tempature有如下的定义: \[ q_i=\frac{e^{z_i/T}}{\sum_j{e^{z_j/T}}} \] 其中T就是tempature,一 ...

  4. jquery中text、html的区别

  5. hadoop更改保存路径后,批量重启不能启动datanode(或者format以后不能启动datanode)

    这是因为更改文件后,所有的子节点的core-site.xml并没有一致,所以使用start-dfs.sh的时候导致机器起不起来. 修改slave(datanode)节点的core-site.xml就可 ...

  6. crontab,定时任务执行找不到库or shell可执行,crontab 定时任务下就不能执行,tensorflow,ImportError: libcuda.so.1: cannot open shared object file: No such file or directory

    在线上启动一个定时任务,但是起来查看,发现任务执行找不到库,报cuda错误: ImportError: libcuda.so.1: cannot open shared object file: No ...

  7. MySql数据库执行insert时候报错:Column count doesn't match value count at row 1

    遇到这个问题之后,第一反应就是前后列数不等造成的,但是我检查SQL之后,发现列数是相同得,但是插入还是有问题,然后又写了简单得SQL只插入不为空得字段,执行还是报这个错,最后请教了高人,指点之后,大概 ...

  8. python2与python3的区别

    print 函数(Python3中print为一个函数,必须用括号括起来:Python2中print为class)在Python 2.6与Python 2.7里面,以下三种形式是等价的: print ...

  9. java 第二天运算符及录入函数Scanner

    package com.it; /* 运算符;就是用于对常量和变量进行操作的符号 表达式:用运算符链接起来的符合java语法的式子,不同的运算符链接的表达式是不同类型的表达式 */ public cl ...

  10. Linux - 其他命令

    其他命令 目标 查找文件 find 软链接 ln 打包和压缩 tar 软件安装 apt-get 01. 查找文件 find 命令功能非常强大,通常用来在 特定的目录下 搜索 符合条件的文件 序号 命令 ...