HiBench 7
官方:https://github.com/intel-hadoop/HiBench

一 简介

HiBench is a big data benchmark suite that helps evaluate different big data frameworks in terms of speed, throughput and system resource utilizations. It contains a set of Hadoop, Spark and streaming workloads, including Sort, WordCount, TeraSort, Sleep, SQL, PageRank, Nutch indexing, Bayes, Kmeans, NWeight and enhanced DFSIO, etc. It also contains several streaming workloads for Spark Streaming, Flink, Storm and Gearpump.

There are totally 19 workloads in HiBench.

Supported Hadoop/Spark/Flink/Storm/Gearpump releases:

Hadoop: Apache Hadoop 2.x, CDH5, HDP
Spark: Spark 1.6.x, Spark 2.0.x, Spark 2.1.x, Spark 2.2.x
Flink: 1.0.3
Storm: 1.0.1
Gearpump: 0.8.1
Kafka: 0.8.2.2

二 spark sql测试

1 download

$ wget https://github.com/intel-hadoop/HiBench/archive/HiBench-7.0.tar.gz
$ tar xvf HiBench-7.0.tar.gz
$ cd HiBench-HiBench-7.0

2 build

1)build all

$ mvn -Dspark=2.1 -Dscala=2.11 clean package

2)build hadoopbench and sparkbench

$ mvn -Phadoopbench -Psparkbench -Dspark=2.1 -Dscala=2.11 clean package

3)only build spark sql

$ mvn -Psparkbench -Dmodules -Psql -Dspark=2.1 -Dscala=2.11 clean package

3 prepare

$ cp conf/hadoop.conf.template conf/hadoop.conf
$ vi conf/hadoop.conf

$ cp conf/spark.conf.template conf/spark.conf
$ vi conf/spark.conf

$ vi conf/hibench.conf
# Data scale profile. Available value is tiny, small, large, huge, gigantic and bigdata.
# The definition of these profiles can be found in the workload's conf file i.e. conf/workloads/micro/wordcount.conf
hibench.scale.profile bigdata

4 run

sql测试分为3种:scan/aggregation/join

$ bin/workloads/sql/scan/prepare/prepare.sh
$ bin/workloads/sql/scan/spark/run.sh

具体配置位于conf/workloads/sql/scan.conf
prepare之后会在hdfs的/HiBench/Scan/Input下生成测试数据,在report/scan/prepare/下生成报告
run之后会在report/scan/spark/下生成报告,比如monitor.html,在hive的default库下可以看到测试数据表

$ bin/workloads/sql/join/prepare/prepare.sh
$ bin/workloads/sql/join/spark/run.sh

$ bin/workloads/sql/aggregation/prepare/prepare.sh
$ bin/workloads/sql/aggregation/spark/run.sh

依此类推

如果prepare时报错内存溢出

尝试修改

$ vi bin/functions/workload_functions.sh
local CMD="${HADOOP_EXECUTABLE} --config ${HADOOP_CONF_DIR} jar $job_jar $job_name $tail_arguments"

格式:hadoop jar <jarName> <youClassName> -D mapreduce.reduce.memory.mb=5120 -D mapreduce.reduce.java.opts=-Xmx4608m <otherArgs>

发现不能生效,尝试增加map数量

$ vi bin/functions/hibench_prop_env_mapping.py:
NUM_MAPS="hibench.default.map.parallelism",

$ vi conf/hibench.conf
hibench.default.map.parallelism 5000

参考:
https://github.com/intel-hadoop/HiBench/blob/master/docs/build-hibench.md
https://github.com/intel-hadoop/HiBench/blob/master/docs/run-sparkbench.md

【原创】大数据基础之Benchmark(1)HiBench的更多相关文章

  1. 【原创】大数据基础之Benchmark(2)TPC-DS

    tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...

  2. 【原创】大数据基础之Benchmark(4)TPC-DS测试结果(hive/hive on spark/spark sql/impala/presto)

    1 测试集群 内存:256GCPU:32Core (Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz)Disk(系统盘):300GDisk(数据盘):1.5T*1 2 ...

  3. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  4. 【原创】大数据基础之词频统计Word Count

    对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...

  5. 【原创】大数据基础之Impala(1)简介、安装、使用

    impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...

  6. 大数据基础知识:分布式计算、服务器集群[zz]

    大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用 ...

  7. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

  8. 大数据基础知识问答----hadoop篇

    handoop相关知识点 1.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速 ...

  9. hadoop大数据基础框架技术详解

    一.什么是大数据 进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB ...

随机推荐

  1. window跟vue变量互相绑定

    js实现变量监听 //定义一个对象,挂载到window下,后续在任何模块中,给这个对象的show属性赋值,都将触发set对应的代码,我这么写主要是为了解决vue子组件向父组件传值的问题 window. ...

  2. 解决浏览器跨域限制方案之CORS

    一.什么是CORS CORS是解决浏览器跨域限制的W3C标准,详见:https://www.w3.org/TR/cors/. 根据CORS标准的定义,在浏览器中访问跨域资源时,需要做如下实现: 服务端 ...

  3. JAVA 线程池之Callable返回结果

    本文介绍如何向线程池提交任务,并获得任务的执行结果.然后模拟 线程池中的线程在执行任务的过程中抛出异常时,该如何处理. 一,执行具体任务的线程类 要想 获得 线程的执行结果,需实现Callable接口 ...

  4. Vue.Draggable/SortableJS 的排序功能,在VUE中的使用

    此插件git: https://github.com/SortableJS/Vue.Draggable 基于Sortable.js http://www.cnblogs.com/xiangsj/p/6 ...

  5. SQL Server进阶 窗口函数

    概述  设计窗口函数目的? 在开窗函数出现之前存在着很多用 SQL 语句很难解决的问题,很多都要通过复杂的相关子查询或者存储过程来完成. 为了解决这些问题,在 2003 年 ISO SQL 标准加入了 ...

  6. AAndroid Studio的\drawable还是mipmap

    图片应该放在drawable文件夹下,而mipmap文件夹只适合放app icons

  7. 【python小练】0010

    第 0010 题:使用 Python 生成类似于下图中的字母验证码图片 思路: 1. 随机生成字符串 2. 创建画布往上头写字符串 3. 干扰画面 code: # codeing: utf-8 fro ...

  8. C# FTPHelper工具类

    /// <summary> /// Ftp /// </summary> public class FtpFileOperation { private string _ftp ...

  9. [C++]PAT乙级1004. 成绩排名 (20/20)

    /* 1004. 成绩排名 (20) 读入n名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式:每个测试输入包含1个测试用例,格式为 第1行:正整数n 第2行:第1个学生 ...

  10. TensorFlow从入门到理解(六):可视化梯度下降

    运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.m ...