谱聚类算法(Spectral Clustering)
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized cut)。
图1 谱聚类无向图划分——Smallest cut和Best cut
这样,谱聚类能够识别任意形状的样本空间且收敛于全局最优解,其基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行聚类。
1 理论基础
对于如下空间向量item-user matrix:
如果要将item做聚类,常常想到k-means聚类方法,复杂度为o(tknm),t为迭代次数,k为类的个数、n为item个数、m为空间向量特征数:
1 如果M足够大呢?
2 K的选取?
3 类的假设是凸球形的?
4 如果item是不同的实体呢?
5 Kmeans无可避免的局部最优收敛?
……
这些都使常见的聚类问题变得相当复杂。
1.1 图的表示
如果我们计算出item与item之间的相似度,便可以得到一个只有item的相似矩阵,进一步,将item看成了Graph(G)中Vertex(V),歌曲之间的相似度看成G中的Edge(E),这样便得到我们常见的图的概念。
对于图的表示(如图2),常用的有:
邻接矩阵:E,eij表示vi和vi的边的权值,E为对称矩阵,对角线上元素为0,如图2-2。
Laplacian矩阵:L = D – E, 其中di (行或列元素的和),如图2-3。
图2 图的表示
1.2 特征值与L矩阵
先考虑一种最优化图像分割方法,以二分为例,将图cut为S和T两部分,等价于如下损失函数cut(S, T),如公式1所示,即最小(砍掉的边的加权和)。
假设二分成两类,S和T,用q(如公式2所示)表示分类情况,且q满足公式3的关系,用于类标识。
那么:
其中D为对角矩阵,行或列元素的和,L为拉普拉斯矩阵。
由:
有:
1、 L为对称半正定矩阵,保证所有特征值都大于等于0;
2、 L矩阵有唯一的0特征值,其对应的特征向量为1。
离散求解q很困难,如果将问题松弛化为连续实数值,由瑞利熵的性质知其二将你型的最小值就是L的特征值们(最小值,第二小值,......,最大值分别对应矩阵L的最小特征值,第二小特征值,......,最大特征值,且极值q相应的特征向量处取得,请参见瑞利熵(Rayleigh quotient))。
写到此,不得不对数学家们致敬,将cut(S,T),巧妙地转换成拉普拉斯矩阵特征值(向量)的问题,将离散的聚类问题,松弛为连续的特征向量,最小的系列特征向量对应着图最优的系列划分方法。剩下的仅是将松弛化的问题再离散化,即将特征向量再划分开,便可以得到相应的类别,如将图3中的最小特征向量,按正负划分,便得类{A,B,C}和类{D,E,F,G}。在K分类时,常将前K个特征向量,采用kmeans分类。
PS:
1、此处虽再次提到kmeans,但意义已经远非引入概念时的讨论的kmeans了,此处的kmeans,更多的是与ensemble learning相关,在此不述;
2、k与聚类个数并非要求相同,可从第4节的相关物理意义中意会;
3、在前k个特征向量中,第一列值完全相同(迭代算法计算特征向量时,值极其相近),kmeans时可以删除,同时也可以通过这一列来简易判断求解特征值(向量)方法是否正确,常常问题在于邻接矩阵不对称。
图3 图的L矩阵的特征值与特征向量
2 最优化方法
在kmeans等其它聚类方法中,很难刻划类的大小关系,局部最优解也是无法回避的漏病。当然这与kmeans的广泛使用相斥——原理简单。
2.1 Min cut方法
如2.2节的计算方法,最优目标函数如下的图cut方法:
计算方法,可直接由计算L的最小特征值(特征向量),求解。
2.2 Nomarlized cut方法
Normarlized cut,目标是同时考虑最小化cut边和划分平衡,以免像图1中的cut出一个单独的H。衡量子图大小的标准是:子图各个端点的Degree之和。
2.3 Ratio Cut 方法
Ratio cut的目标是同时考虑最小化cut边和划分平衡,以免像图1中的cut出一个单独的H。
最优目标函数为:
2.4 Normalized相似变换
归一化的L矩阵有:
因而L’的最小特征值与D-(1/2)E D-(1/2)的最大特征值对应。
而计算的L’相比计算L要稍具优势,在具体实用中,常以L’替代L,但是min cut和ratio cut不可以。
PS:这也是常常在人们的博客中,A说谱聚类为求最大K特征值(向量),B说谱聚类为求最小K个特征值(向量的原因)。
3 谱聚类步骤
第一步:数据准备,生成图的邻接矩阵;
第二步:归一化普拉斯矩阵;
第三步:生成最小的k个特征值和对应的特征向量;
第四步:将特征向量kmeans聚类(少量的特征向量);
4 谱聚类的物理意义
谱聚类中的矩阵:
可见不管是L、L’都与E联系特别大。如果将E看成一个高维向量空间,也能在一定程度上反映item之间的关系。将E直接kmeans聚类,得到的结果也能反映V的聚类特性,而谱聚类的引入L和L’是使得G的分割具有物理意义。
而且,如果E的item(即n)足够大,将难计算出它的kmeans,我们完全可以用PCA降维(仍为top的特征值与向量)。
上述对将E当成向量空间矩阵,直观地看符合我们的认知,但缺乏理论基础;而L(L’等)的引入,如第2节所述,使得计算具有理论基础,其前k个特征向量,也等价于对L(L’等)的降维。
因而聚类就是为图的划分找了理论基础,能达到降维的目的。
其中不少图出源于Mining of Massive Datasets,对于同仁们的布道授业,一并感谢。
推荐相关相关文档:Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, Edward Y. Chang. Parallel Spectral Clustering in Distributed Systems.
推荐相关源码:https://code.google.com/p/pspectralclustering/ (真心很赞)
更多扩展内容请见后续博文:谱聚类算法(Spectral Clustering)优化与扩展。
------
谱聚类算法(Spectral Clustering)的更多相关文章
- 谱聚类算法(Spectral Clustering)优化与扩展
谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在社交网络中广泛应用.本文将讲述进一步扩展其应用场景:首先是User- ...
- 谱聚类(spectral clustering)原理总结
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...
- 谱聚类(Spectral clustering)分析(1)
作者:桂. 时间:2017-04-13 19:14:48 链接:http://www.cnblogs.com/xingshansi/p/6702174.html 声明:本文大部分内容来自:刘建平Pi ...
- 谱聚类(Spectral clustering)(2):NCut
作者:桂. 时间:2017-04-13 21:19:41 链接:http://www.cnblogs.com/xingshansi/p/6706400.html 声明:欢迎被转载,不过记得注明出处哦 ...
- 谱聚类(Spectral clustering)(1):RatioCut
作者:桂. 时间:2017-04-13 19:14:48 链接:http://www.cnblogs.com/xingshansi/p/6702174.html 声明:本文大部分内容来自:刘建平Pi ...
- 谱聚类(Spectral Clustring)原理
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...
- 谱聚类算法—Matlab代码
% ========================================================================= % 算 法 名 称: Spectral Clus ...
- Standford机器学习 聚类算法(clustering)和非监督学习(unsupervised Learning)
聚类算法是一类非监督学习算法,在有监督学习中,学习的目标是要在两类样本中找出他们的分界,训练数据是给定标签的,要么属于正类要么属于负类.而非监督学习,它的目的是在一个没有标签的数据集中找出这个数据集的 ...
- 谱聚类算法及其代码(Spectral Clustering)
https://blog.csdn.net/liu1194397014/article/details/52990015 https://blog.csdn.net/u011089523/articl ...
随机推荐
- python安装Jieba中文分词组件并测试
python安装Jieba中文分词组件 1.下载http://pypi.python.org/pypi/jieba/ 2.解压到解压到python目录下: 3.“win+R”进入cmd:依次输入如下代 ...
- [转]用virtualBox安装centos设置网络和通信
本文转自:https://blog.csdn.net/hsl_1990_08_15/article/details/51644451 具体的安装和在VM Ware中安装的方式大同小异 安装好后我们设置 ...
- 【转载】 Sqlserver查看数据库死锁的SQL语句
在Sqlsever数据库中,有时候操作数据库过程中会进行锁表操作,在锁表操作的过程中,有时候会出现死锁的情况出现,这时候可以使用SQL语句来查询数据库死锁情况,主要通过系统数据库Master数据库来查 ...
- .NET使用ServerManager获取网站物理路径
最近因为工作需要,用wpf做了一个辅助小工具,如下图 为了获取网站的物理路径,我分析了通过ServerManager获取到的变量,也通过百度搜索了很多,但仍然没有找到方法. 后来使用必应,在国外网站找 ...
- Entity Framework Code first(转载)
一.Entity Framework Code first(代码优先)使用过程 1.1Entity Framework 代码优先简介 不得不提Entity Framework Code First这个 ...
- java连接MySQL数据库的方式
Java连接数据库的几种方法 *说明 1.以MySQL数据库为例 2.分为四个步骤: 建立数据库连接, 向数据库中提交sql 处理数据库返回的结果 关闭数据库连接 一:JDBC 1.建立数据库连接 只 ...
- 【Spring】29、SpringBoot中@SpringBootApplication的使用
之前用户使用的是3个注解注解他们的main类.分别是@Configuration,@EnableAutoConfiguration,@ComponentScan.由于这些注解一般都是一起使用,spri ...
- 【Linux命令】top命令
一.简介 top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,常用于服务端性能分析. 二.使用 1.查看进程内线程情况 top -Hp 2556(2556为进程号)找 ...
- Java中对象和json互相转换的工具类
package com.Dingyu.util; import java.util.List; import com.fasterxml.jackson.core.JsonProcessingExce ...
- javascript中数组的常用算法深入分析
Array数组是Javascript构成的一个重要的部分,它可以用来存储字符串.对象.函数.Number,它是非常强大的.因此深入了解Array是前端必修的功课.本文将给大家详细介绍了javascri ...