CUDA编程模型——组织并行线程3 (2D grid 1D block)
当使用一个包含一维块的二维网格时,每个线程都只关注一个数据元素并且网格的第二个维数等于ny,如下图所示:

这可以看作是含有二维块的二维网格的特殊情况,其中块儿的第二个维数是1。因此,从块儿和线程索引到矩阵坐标的映射就变成:
ix = threadIdx.x + blockIdx.x * blockDim.x;
iy = blockIdx.y;
从矩阵坐标到全局线性内存偏移量的映射保持不变。核函数如下:
__global__ void sumMatrixOnGPUMix(float *MatA,float *MatB,float *MatC,int nx,int ny)
{
unsigned int ix=threadIdx.x+blockIdx.x*blockDim.x;
unsigned int iy=blockIdx.y;
unsigned int idx=iy*nx+ix;
if(ix<nx&&iy<ny)
MatC[idx]=MatA[idx]+MatB[idx];
}
与二维核函数sumMatrixOnGPU2D不同的是,这个新的核函数的唯一优点是每个线程省去了一次整数乘法和整数加法的运算。将块尺寸设置为32,并在此基础上计算网格大小。
dim3 block();//x方向上有32个线程块
dim3 grid((nx-)/block.x+,ny);
实验运行结果如下图:

将线程块的大小增加到256,实验表现出目前为止最佳的性能:

下表是不同核函数实现的结果比较,执行配置都是对应核函数性能较优的参数。
| 内核函数 | 执行配置 | 运行时间 |
| sumMatrixOnGPU2D | (512,1024),(32,16) | 0.197 sec |
| sumMatrixOnGPU1D | (512,1),(32,1) | 0.032 sec |
| sumMatrixOnGPUMix | (64,16384),(256,1) | 0.0178 sec |
从矩阵加法的例子中看出:
- 改变执行配置对内核性能有影响;
- 传统的核函数实现一般不能获得最佳性能;
- 对于一个给定的核函数,尝试使用不同的网络和线程块大小可以获得更好的性能。
主要参考文献:
- 《 CUDA C编程权威指南》
CUDA编程模型——组织并行线程3 (2D grid 1D block)的更多相关文章
- CUDA编程模型——组织并行线程2 (1D grid 1D block)
在”组织并行编程1“中,通过组织并行线程为”2D grid 2D block“对矩阵求和,在本文中通过组织为 1D grid 1D block进行矩阵求和.一维网格和一维线程块的结构如下图: 其中,n ...
- 【CUDA 基础】2.3 组织并行线程
title: [CUDA 基础]2.3 组织并行线程 categories: CUDA Freshman tags: Thread Block Grid toc: true date: 2018-03 ...
- CUDA编程模型
1. 典型的CUDA编程包括五个步骤: 分配GPU内存 从CPU内存中拷贝数据到GPU内存中 调用CUDA内核函数来完成指定的任务 将数据从GPU内存中拷贝回CPU内存中 释放GPU内存 *2. 数据 ...
- CUDA刷新器:CUDA编程模型
CUDA刷新器:CUDA编程模型 CUDA Refresher: The CUDA Programming Model CUDA,CUDA刷新器,并行编程 这是CUDA更新系列的第四篇文章,它的目标是 ...
- CUDA编程模型之内存管理
CUDA编程模型假设系统是由一个主机和一个设备组成的,而且各自拥有独立的内存. 主机:CPU及其内存(主机内存),主机内存中的变量名以h_为前缀,主机代码按照ANSI C标准进行编写 设备:GPU及其 ...
- CUDA学习笔记(一)——CUDA编程模型
转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm56.html CUDA的代码分成两部分,一部分在host(CPU)上运行,是普通的C代码:另一部分在d ...
- CUDA编程之快速入门
CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要 ...
- CUDA编程之快速入门【转】
https://www.cnblogs.com/skyfsm/p/9673960.html CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架 ...
- cuda编程基础
转自: http://blog.csdn.net/augusdi/article/details/12529247 CUDA编程模型 CUDA编程模型将CPU作为主机,GPU作为协处理器(co-pro ...
随机推荐
- fiddler近期用到的一些新功能
一,AutoResponder导出导入 将AutoResponder中的规则全部选中,右键选择 Export All,可以导出成rule.farx文件 导入时选择Add Rule右边的Import按钮 ...
- 30天代码day3 Intro to Conditional Statements
Boolean A logical statement that evaluates to true or false. In some languages, true is interchangea ...
- Qt实现 动态化遍历二叉树(前中后层次遍历)
binarytree.h 头文件 #ifndef LINKEDBINARYTREE_H #define LINKEDBINARYTREE_H #include<c++/algorithm> ...
- mac 常用技巧
1.xcode-select --install 2.iterm2 https://www.cnblogs.com/xishuai/p/mac-iterm2.html 3.SUDO 免密码 visud ...
- 使用 whereis/which/locate 查找文件
whereis命令 whereis只能用于搜索可执行文件 (-b) , 联机帮助文件 (-m) 和源代码文件 (-s) . 它只在一个数据库中查询(/var/lib/mlocate) . 这个数据库是 ...
- IIC详解
(1)概述 I2C(Inter-Integrated Circuit BUS) 集成电路总线,该总线由NXP(原PHILIPS)公司设计,多用于主控制器和从器件间的主从通信,在小数据量场合使用,传输距 ...
- P2820 局域网
GOOD NIGHT 诸位,这是最小生成树的模板(掌声) 最小生成树 以下是题目链接:FOR——MIKU 代码如下 /* 并查集可以解决最小生成树的问题 因为并查集可以完成高效的合并 但是,以下代码依 ...
- Jrebel 配置
先下载插件 http://139.199.89.239:1008/88414687-3b91-4286-89ba-2dc813b107ce http://jrebel.autoseasy.cn/xix ...
- mnist的格式说明,以及在python3.x和python 2.x读取mnist数据集的不同
有一个关于mnist的一个事例可以参考,我觉得写的很好:http://www.cnblogs.com/x1957/archive/2012/06/02/2531503.html #!/usr/bin/ ...
- 将多张图片打包成zip包,一起上传
1.前端页面 <div class="mod-body" id="showRW" style="text-align: center;font- ...