Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Optimization algorithms
Gradient descent
Batch Gradient Decent, Mini-batch gradient descent, Stochastic gradient descent
还有很多比gradient decent 更优化的算法,在了解这些算法前,需要先理解 Exponentially weighted averages 这个概念
Exponentially weighted average 是一种计算平均值的方法,非常省storage 和 memory, 但是不是很精确。 然后引出一个bias correction 的概念,就是为了能使得 Exponentially weighted average 更加精确.
momentum (or called Gradient descent with momentum)
传统的Gradient descent 算法有如下图所示的问题 - 每次迭代都会来回跳动,不直接指向optimum, 在没有做feature scaling 的时候尤其明显。所以引出一个修正的算法 - Gradient descent with momentum.
RMSprop
目的和上面讲到的Momentum是一样的,就是使得每次迭代都尽量指向optimum而不是来回跳动. 算法实现如下. RMSprop带来的好处是迭代更快,和可以选用更大的learning rate.
Adam optimation algorithm:
结合了Momentum 和 RMSprop 两种算法. Adam stands for Adaptive mement estimation.
Learning rate decay
why? to reduce the oscillation near the central point.
有哪些实现方式呢?
Local optima and saddle point
在大型神经网络里,saddle point 可能比local optima更常见.
Ref:
Coursera, Deep leaning, Andrew Ng
Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Optimization algorithms的更多相关文章
- 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记
Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...
- 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking
Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...
- 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...
- 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...
- 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments
Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...
随机推荐
- 用lemon测交互题
题目类型:传统. 答案比较类型:逐行比较类型(忽略多余空格和制表符). 配置:交互. 编译器参数: -o %s %s.* ..\..\data\%s\judge.cpp -Wl,--stack= ju ...
- bitmap的使用
https://blog.csdn.net/csdnsevenn/article/details/82230049 使用bitmap来解决: 2的32次方大概是42亿个数,所以这么多数中,存在的为1, ...
- STM32L011D4 ----- 低功耗
After resuming from STOP the clock configuration returns to its reset state (MSI, HSI16 or HSI16/4 u ...
- saltstack grains
saltstack的grains类似于ansible的setup模块,主要作用为手机客户端的主机基本信息(cpu,内核,os,virtual等),定义在客户端 [root@k8s_master ~]# ...
- Hadoop记录-Hadoop集群重要监控指标
通用监控指标 对于每个RPC服务应该监控 RpcProcessingTimeAvgTime(PRC处理的平均时间) 通常hdfs在异常任务突发大量访问时,这个参数会突然变得很大,导致其他用户访问hdf ...
- ruby----%使用法
%{String} 用于创建一个使用双引号括起来的字符串,这个表示法与%Q{String}完全一样 result = %{hello} puts "result is: #{result} ...
- Ubuntu修改Apache默认Web端口
改成你要的端口,默认为80,这里我改成了8080,https改成了444,保存之后寻找000/default.conf并修改成和ports.conf文件一样的http端口,然后重启Apache服务器即 ...
- cmd快速设置本机ip和dns【转】
. 参考: https://wenku.baidu.com/view/74c59947336c1eb91a375dbe.html 家里配置如下 尾部的1不要忘了 netsh interface ip ...
- Python复习笔记(五)面向对象
1. __init__方法 # 1. 为对象在内存 中分配空间 -- 创建对象 # 2. 为对象属性 设置初始值 -- 初始化方法(init)+-------------- # 3. __init__ ...
- Spark源码剖析 - SparkContext的初始化(三)_创建并初始化Spark UI
3. 创建并初始化Spark UI 任何系统都需要提供监控功能,用浏览器能访问具有样式及布局并提供丰富监控数据的页面无疑是一种简单.高效的方式.SparkUI就是这样的服务. 在大型分布式系统中,采用 ...