TensorFlow从入门到理解(二):你的第一个神经网络
运行代码:
from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # 神经层函数
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs # 导入数据
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise # 利用占位符定义我们所需的神经网络输入
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1]) # 定义隐藏层
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) # 定义输出层
prediction = add_layer(l1, 10, 1, activation_function=None) # 计算误差和提供准确率
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
# 输出结果
sess = tf.Session()
sess.run(init) # matplotlib可视化
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show() # 机器学习,学习1000次
for i in range(1000):
# 每50步输出学习误差
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# 可视化结果和改进
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# 用红色和宽度为5的线来显示预测结果,并暂停0.1秒
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(1)
运行结果:
TensorFlow从入门到理解(二):你的第一个神经网络的更多相关文章
- TensorFlow从入门到理解
一.<莫烦Python>学习笔记: TensorFlow从入门到理解(一):搭建开发环境[基于Ubuntu18.04] TensorFlow从入门到理解(二):你的第一个神经网络 Tens ...
- TensorFlow从入门到理解(一):搭建开发环境【基于Ubuntu18.04】
*注:教程及本文章皆使用Python3+语言,执行.py文件都是用终端(如果使用Python2+和IDE都会和本文描述有点不符) 一.安装,测试,卸载 TensorFlow官网介绍得很全面,很完美了, ...
- TensorFlow从入门到理解(六):可视化梯度下降
运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.m ...
- TensorFlow从入门到理解(五):你的第一个循环神经网络RNN(回归例子)
运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIM ...
- TensorFlow从入门到理解(四):你的第一个循环神经网络RNN(分类例子)
运行代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # set rando ...
- TensorFlow从入门到理解(三):你的第一个卷积神经网络(CNN)
运行代码: from __future__ import print_function import tensorflow as tf from tensorflow.examples.tutoria ...
- 如何入门Pytorch之二:如何搭建实用神经网络
上一节中,我们介绍了Pytorch的基本知识,如数据格式,梯度,损失等内容. 在本节中,我们将介绍如何使用Pytorch来搭建一个经典的分类神经网络. 搭建一个神经网络并训练,大致有这么四个部分: 1 ...
- tensorflow 从入门到摔掉肋骨 教程二
构造你自己的第一个神经网络 通过手势的图片识别图片比划的数字:1) 现在用1080张64*64的图片作为训练集2) 用120张图片作为测试集 定义初始化值 def load_dataset(): ...
- TensorFlow学习——入门篇
本文主要通过一个简单的 Demo 介绍 TensorFlow 初级 API 的使用方法,因为自己也是初学者,因此本文的目的主要是引导刚接触 TensorFlow 或者 机器学习的同学,能够从第一步开始 ...
随机推荐
- 10元买啤酒问题Java解法
10元去买啤酒,2元一瓶.每两个瓶可以换一瓶啤酒,每四个瓶盖可以换一瓶啤酒.最多买几瓶? public class Java { public static void main(String[] ar ...
- zabbix监控URL
选在相应主机,并添加Web监控 按照方式新建Web场景 注意: 名称统一规则:web_check_相应的域名 应用集:新建一个,名称为“web状态” 更新间隔:改为30s,默认为1m 尝试次数:改为2 ...
- 第六节,Neural Networks and Deep Learning 一书小节(下)
4.神经网络可以计算任何函数的可视化证明 神经网络拥有一定的普遍性,即包含一个隐藏层的神经网络可以被用来按照任意给定的精度来近似任何连续函数. 这一章使用一个实例来阐述神经网络是如何来近似一个一元函数 ...
- 对C# .Net4.5异步机制测试(二)——加深印象
public static void Main() { Console.WriteLine(Thread.CurrentThread.ManagedThreadId); In(); Console.W ...
- C语言进阶——Day 1
C语言提高笔记 Day 1 小数据赋给大变量,首位是1则在前面自动补充1,首位是0则在前方自动补充0. 大数据赋给小变量,低位字节对齐,truncate截断,有可能会造成数据丢失. 程序和进程的差别: ...
- python基础四-文件读取
文件读取 open()接受一个参数:要打开的文件名, 并返回一个表示文件的对象, 存储到后面的变量中 python会在当前执行文件所在目录查找 可以使用绝对路径, 在linux中使用'/', 在win ...
- 关于处理iis8.0中设置Request.BinaryRead 不允许操作的解决方法
iis6.0解决方案: 起初我刚开始上传的是小文件运行都是正常的,后来我弄个文件大点的上传看程序运行怎么样?就上面的问题,在网上搜索正好找到跟我一样的问题,拿过来自己记录下.其中行62指的是:oUpF ...
- SSH整合redis和MongoDB错误笔记
由于毕设中做的是图片搜索网站,选择前端框用SSH,因为之间接触过SSH框架,略有了解,但没有深究,现在在整合redis和mongodb的过程中遇到很多错误,也是十分痛苦,只能通过百度和一步步尝试着解决 ...
- 字节缓冲流 BufferedOutputStream BufferedInputStream
/*缓冲流:读取数据大量的文件时,读取的速度慢java提供了一套缓冲流 提高io流的效率 * */ package cn.lijun.demo; import java.io.BufferedInpu ...
- php 4种传值方式
我们定义page01.php和page02.php两个php文件,将page01中的内容想办法传递到page02,然后供我们继续使用. 第一种: 使用客户端浏览器的cookie.cookie很 ...