【BZOJ3379】【USACO2004】交作业 区间DP
题目描述
数轴上有\(n\)个点,你要从位置\(0\)去位置\(B\),你每秒钟可以移动\(1\)单位。还有\(m\)个限制,每个限制\((x,y)\)表示你要在第\(t\)秒之后(可以是第\(t\)秒)经过位置\(y\)。问你最少需要几秒。
\(n\leq 1000\)。
题解
可以发现如果\(B\leq x_i\leq x_j\)且\(y_i\leq y_j\)那么第\(i\)个限制就没有效果。所以我们每次一定是选择当前还没走过的最边上两个端点之一,走过去,然后等待。
这样就可以DP了。
设\(f_{i,j,0}\)为\(i\)$j$这些限制还没有满足且当前在$x_i$的最小时刻,$f_{i,j,1}$为$i$\(j\)这些限制还没有满足且当前在\(x_j\)的最小时刻。这样就可以区间DP了。
时间复杂度:\(O(n^2)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
struct xj
{
int x,t;
};
xj a[1010];
int cmp(xj a,xj b)
{
return a.x<b.x;
}
int f[1010][1010][2];
int main()
{
int n,orzxj,k;
scanf("%d%d%d",&n,&orzxj,&k);
int i,j;
for(i=1;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].t);
a[++n].x=k;
a[n].t=0;
sort(a+1,a+n+1,cmp);
int x;
for(i=1;i<=n;i++)
if(a[i].x==k&&!a[i].t)
x=i;
for(i=1;i<=x;i++)
for(j=n;j>=x;j--)
if(i==1&&j==n)
{
f[i][j][0]=max(a[i].x,a[i].t);
f[i][j][1]=max(a[j].x,a[j].t);
}
else
{
f[i][j][0]=f[i][j][1]=0x7fffffff;
if(j!=n)
{
f[i][j][0]=min(f[i][j][0],max(a[i].t,f[i][j+1][1]+a[j+1].x-a[i].x));
f[i][j][1]=min(f[i][j][1],max(a[j].t,f[i][j+1][1]+a[j+1].x-a[j].x));
}
if(i!=1)
{
f[i][j][0]=min(f[i][j][0],max(a[i].t,f[i-1][j][0]+a[i].x-a[i-1].x));
f[i][j][1]=min(f[i][j][1],max(a[j].t,f[i-1][j][0]+a[j].x-a[i-1].x));
}
}
printf("%d\n",f[x][x][0]);
return 0;
}
【BZOJ3379】【USACO2004】交作业 区间DP的更多相关文章
- 【bzoj3379】[Usaco2004 Open]Turning in Homework 交作业 区间dp
题目描述 数轴上有C个点,每个点有一个坐标和一个访问时间,必须在这个时间后到达这个点才算访问完成.可以在某个位置停留.每在数轴上走一个单位长度消耗一个单位的时间,问:访问所有点并最终到B花费的最小时间 ...
- bzoj 3379 - [USACO2004] 交作业
Description 一个数轴上有 \(n \le 1000\) 个位置, 每个位置有一个时间 \(t_i\) 要求在 时刻 \(t_i\) 后, 至少经过该位置一次. (去交作业) 求从 \(0\ ...
- 【BZOJ3379】[Usaco2004 Open]Turning in Homework 交作业 DP
[BZOJ3379][Usaco2004 Open]Turning in Homework 交作业 Description 贝茜有C(1≤C≤1000)门科目的作业要上交,之后她要去坐巴士和奶 ...
- BZOJ 3379: [Usaco2004 Open]Turning in Homework 交作业
Description 贝茜有C(1≤C≤1000)门科目的作业要上交,之后她要去坐巴士和奶牛同学回家. 每门科目的老师所在的教室排列在一条长为H(1≤H≤1000)的走廊上,他们只在课后接收 ...
- P2339 提交作业usaco(区间dp)
P2339 提交作业usaco 题目背景 usaco 题目描述 贝西在哞哞大学选修了 C 门课,她要把所有作业分别交给每门课的老师,然后去车站和同学们一起回家.每个老师在各自的办公室里,办公室要等他们 ...
- 区间dp提升复习
区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...
- POJ 1991 Turning in Homework(区间DP)
题目链接 Turning in Homework 考虑区间DP $f[i][j][0]$为只考虑区间$[i, j]$且最后在$a[i]$位置交作业的答案. $f[i][j][1]$为只考虑区间$[i, ...
- HDU 2476 String painter (区间DP)
题意:给出两个串a和b,一次只能将一个区间刷一次,问最少几次能让a=b 思路:首先考虑最坏的情况,就是先将一个空白字符串刷成b需要的次数,直接区间DP[i][j]表示i到j的最小次数. 再考虑把a变成 ...
- ZOJ3469 Food Delivery 区间DP
题意:有一家快餐店送外卖,现在同时有n个家庭打进电话订购,送货员得以V-1的速度一家一家的运送,但是每一个家庭都有一个不开心的值,每分钟都会增加一倍,值达到一定程度,该家庭将不会再订购外卖了,现在为了 ...
随机推荐
- 如何用 Node.js 和 Elasticsearch 构建搜索引擎
Elasticsearch 是一款开源的搜索引擎,由于其高性能和分布式系统架构而备受关注.本文将讨论其关键特性,并手把手教你如何用它创建 Node.js 搜索引擎. Elasticsearch 概述 ...
- 二次剩余 Cipolla算法
欧拉准则 \(a\)是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}}\equiv 1\pmod p\),\(a\)不是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}} ...
- MySQL添加用户错误:ERROR 1364 (HY000): Field 'ssl_cipher' doesn't have a default value解决方法
MySQL添加新用户时出现如下报错,如下图: 经过查资料了解到: mysql用户表的中某些字段不能为空,没有默认值,其实是操作错误,mysql添加用户是不能这样直接insert user表的. 改为以 ...
- Let's-Bug修复日志
Version 1.1 2015/11/16 修复了上传图片画质问题的Bug 修复了搜索功能的部分Bug 增加了下拉刷新的功能 修复了部分界面跳转之间的问题
- Karen and Game CodeForces - 816C (暴力+构造)
On the way to school, Karen became fixated on the puzzle game on her phone! The game is played as fo ...
- HTTPS建立连接的过程
HTTP建立连接的过程点击:HTTP三次握手.一次HTTP请求都发生了什么 一.HTTPS HTTP是超文本传输协议.HTTP协议传输的数据都是未加密的,也就是明文的,因此使用HTTP协议传输隐私 ...
- Shell脚本1
1Shell编程 Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.Shell 既是一种命令语言,又是一种程序设计语言. Shell脚本 Shell 脚本(shell scr ...
- 【学习总结】Git学习-参考廖雪峰老师教程三-创建版本库
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- JavaScript中变量、执行环境、作用域与C#中的异同
首先需要明确一个执行环境的概念,执行环境这个概念是用来理解作用域的,在js中,执行环境分为全局执行环境和局部(function)执行环境,而在C#这类的C类语言中,还有一个块级别的执行环境,如if语句 ...
- laravel服务容器
laravel框架底层解析 本文参考陈昊<Laravel框架关键技术解析>,搭建一个属于自己的简化版服务容器.其中涉及到反射.自动加载,还是需要去了解一下. laravel服务容器 建立项 ...