题目描述

  有\(n\)点,每个点有度数限制,\(\forall i(1\leq i\leq n)\),让你选出\(i\)个点,再构造一棵生成树,要求每个点的度数不超过度数限制。问你有多少种方案。

  \(n\leq 100\)

题解

  考虑prufer序列。

  每个prufer序列唯一对应一棵无根树。

  设\(f_{i,j,k}\)为前\(i\)个点选了\(j\)个点,目前的prufer序列长度为\(k\)的方案数。

  每次枚举下一个点选不选和度数

  不选:\(f_{i+1,j,k}+=f_{i,j,k}\)

  选,度数为\(l\):\(f_{i+1,j+1,k+l-1}+=f_{i,j,k}\times\binom{k+l-1}{k}\)

  答案为\(f_{n,i,i-2}\)

  时间复杂度:\(O(n^4)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ll p=1000000007;
ll c[110][110];
ll f[110][110][110];
int d[110];
void add(ll &a,ll b)
{
a=(a+b)%p;
}
int main()
{
int n;
scanf("%d",&n);
int i,j,k,l;
for(i=1;i<=n;i++)
scanf("%d",&d[i]);
for(i=0;i<=n;i++)
{
c[i][0]=1;
for(j=1;j<=i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%p;
}
f[0][0][0]=1;
for(i=0;i<n;i++)
for(j=0;j<=i;j++)
for(k=0;k<=n-2;k++)
if(f[i][j][k])
{
add(f[i+1][j][k],f[i][j][k]);
for(l=0;l<=d[i+1]-1&&k+l<=n-2;l++)
add(f[i+1][j+1][k+l],f[i][j][k]*c[k+l][k]);
}
printf("%d\n",n);
for(i=2;i<=n;i++)
printf("%lld\n",f[n][i][i-2]);
return 0;
}

【XSY2519】神经元 prufer序列 DP的更多相关文章

  1. BSOJ 5445 -- 【2018雅礼】树 prufer序列 dp

    BSOJ在哪我也不知道 没有链接. 对于有标号无根树的统计和有度数限制 一般采用prufer序列. 根据prufer序列 容易知道 某个点的出现次数+1为当前点的度数. 对于这道题 考虑设f[i][j ...

  2. 【CF917D】Stranger Trees 树形DP+Prufer序列

    [CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...

  3. 5.13 省选模拟赛 优雅的绽放吧,墨染樱花 多项式 prufer序列 计数 dp

    LINK:优雅的绽放吧,墨染樱花 当时考完只会50分的做法 最近做了某道题受到启发 故会做这道题目了.(末尾附30分 50分 100分code 看到度数容易想到prufer序列 考虑dp统计方案数. ...

  4. [2021.4.9多校省选模拟35]隐形斗篷 (prufer序列,背包DP)

    题面 我编不下去了! 给出 n n n 个点,第 i i i 个点的度数限制为 a i a_i ai​,现在需要选出 x x x 个点构成一颗树,要求这 x x x 个点中每个点的度数不超过这个点的 ...

  5. bzoj 1005 1211 prufer序列总结

    两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer ...

  6. bzoj1211: prufer序列 | [HNOI2004]树的计数

    题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通 ...

  7. [BZOJ1211][HNOI2004]树的计数(Prufer序列)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那 ...

  8. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  9. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

随机推荐

  1. python第三章:循环语句--小白博客

    Python条件语句 Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块. 可以通过下图来简单了解条件语句的执行过程: Python程序语言指定任何非0和非 ...

  2. Codeforces Round #521 (Div. 3)

    B 题过的有些牵强,浪费了很多时间,这种题一定想好思路和边界条件再打,争取一发过.  D 题最开始读错题,后面最后发现可以重复感觉就没法做了,现在想来,数据量大,但是数据范围小枚举不行,二分还是可以的 ...

  3. 埋锅。。。BZOJ1004-置换群+burnside定理+

    看这道题时当时觉得懵逼...这玩意完全看不懂啊...什么burnside...难受... 于是去看了点视频和资料,大概懂了置换群和burnside定理,亦步亦趋的懂了别人的代码,然后慢慢的打了出来.. ...

  4. 正则表达式验证input文本框

    方便以后的查找,直接copy代码在这里了. eg: //公司邮箱验证 if ($("#Email").val() != "") { var myreg = /^ ...

  5. 如何命名Java变量

    如同酒店会给每个房间起个性化的名字一样,程序中的变量也需要用合理的名字进行管理--变量名! 需要注意,给酒店房间起名字时可以是数字,如“802”,也可以是有趣的名字,如“牡丹”.“美国总统”.“水帘洞 ...

  6. 合并dll文件

    在使用VS进行.Net编程时,出现了一个奇怪的现象. 在一个类库项目中导入了dll库A后,再导入A的两个依赖项(dll库)B和C,执行“生成”操作时,出现错误信息,提示B和C的库版本与A所需的不一致. ...

  7. Python_线程、线程效率测试、数据隔离测试、主线程和子线程

    0.进程中的概念 三状态:就绪.运行.阻塞 就绪(Ready):当进程已分配到除CPU以外的所有必要资源,只要获得处理机便可立即执行,这时的进程状态成为就绪状态. 执行/运行(Running)状态:当 ...

  8. 《Effective C++》资源管理:条款13-条款17

    条款13:以对象管理资源 为了防止资源泄漏,请使用RAII(Resource Acquisition Is Initialization)对象,在构造函数里面获得资源,在析构函数里面释放资源 auto ...

  9. 【学亮IT手记】使用Map代替switch...case语句

  10. C# Note30: 网络爬虫

    用C#实现网络爬虫(一) 用C#实现网络爬虫(二) 基于C#.NET的高端智能化网络爬虫(一)(反爬虫哥必看) 基于C#.NET的高端智能化网络爬虫(二)(攻破携程网) C#获取网页内容的三种方式