【XSY2519】神经元 prufer序列 DP
题目描述
有\(n\)点,每个点有度数限制,\(\forall i(1\leq i\leq n)\),让你选出\(i\)个点,再构造一棵生成树,要求每个点的度数不超过度数限制。问你有多少种方案。
\(n\leq 100\)
题解
考虑prufer序列。
每个prufer序列唯一对应一棵无根树。
设\(f_{i,j,k}\)为前\(i\)个点选了\(j\)个点,目前的prufer序列长度为\(k\)的方案数。
每次枚举下一个点选不选和度数
不选:\(f_{i+1,j,k}+=f_{i,j,k}\)
选,度数为\(l\):\(f_{i+1,j+1,k+l-1}+=f_{i,j,k}\times\binom{k+l-1}{k}\)
答案为\(f_{n,i,i-2}\)
时间复杂度:\(O(n^4)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ll p=1000000007;
ll c[110][110];
ll f[110][110][110];
int d[110];
void add(ll &a,ll b)
{
a=(a+b)%p;
}
int main()
{
int n;
scanf("%d",&n);
int i,j,k,l;
for(i=1;i<=n;i++)
scanf("%d",&d[i]);
for(i=0;i<=n;i++)
{
c[i][0]=1;
for(j=1;j<=i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%p;
}
f[0][0][0]=1;
for(i=0;i<n;i++)
for(j=0;j<=i;j++)
for(k=0;k<=n-2;k++)
if(f[i][j][k])
{
add(f[i+1][j][k],f[i][j][k]);
for(l=0;l<=d[i+1]-1&&k+l<=n-2;l++)
add(f[i+1][j+1][k+l],f[i][j][k]*c[k+l][k]);
}
printf("%d\n",n);
for(i=2;i<=n;i++)
printf("%lld\n",f[n][i][i-2]);
return 0;
}
【XSY2519】神经元 prufer序列 DP的更多相关文章
- BSOJ 5445 -- 【2018雅礼】树 prufer序列 dp
BSOJ在哪我也不知道 没有链接. 对于有标号无根树的统计和有度数限制 一般采用prufer序列. 根据prufer序列 容易知道 某个点的出现次数+1为当前点的度数. 对于这道题 考虑设f[i][j ...
- 【CF917D】Stranger Trees 树形DP+Prufer序列
[CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...
- 5.13 省选模拟赛 优雅的绽放吧,墨染樱花 多项式 prufer序列 计数 dp
LINK:优雅的绽放吧,墨染樱花 当时考完只会50分的做法 最近做了某道题受到启发 故会做这道题目了.(末尾附30分 50分 100分code 看到度数容易想到prufer序列 考虑dp统计方案数. ...
- [2021.4.9多校省选模拟35]隐形斗篷 (prufer序列,背包DP)
题面 我编不下去了! 给出 n n n 个点,第 i i i 个点的度数限制为 a i a_i ai,现在需要选出 x x x 个点构成一颗树,要求这 x x x 个点中每个点的度数不超过这个点的 ...
- bzoj 1005 1211 prufer序列总结
两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer ...
- bzoj1211: prufer序列 | [HNOI2004]树的计数
题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通 ...
- [BZOJ1211][HNOI2004]树的计数(Prufer序列)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那 ...
- 树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
随机推荐
- Golang-教程
http://www.runoob.com/go/go-environment.html https://www.pythonav.cn/
- MyEclipse和eclipse的区别
对于新手来说,MyEclipse和eclipse来说的区别可能就是MyEclipse比eclipse多了my,MyEclipse主要为JavaEE开发,而Eclipse主要为Java开发..那么MyE ...
- 第十二届湖南省赛 A - 2016 ( 数学,同余转换)
给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量: 1. 1≤a≤n,1≤b≤m; 2. a×b 是 2016 的倍数. Input 输入包含不超过 30 ...
- Python技术之书籍汇总
近日,一直在学习Python,发现有关的书籍还是很多值得一读的,所以在此总结一下.以后慢慢去研读吧!!! Python入门 <Python编程快速上手——让繁琐工作自动化> 作者: [美] ...
- React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton)
React Native之(支持iOS与Android)自定义单选按钮(RadioGroup,RadioButton) 一,需求与简单介绍 在开发项目时发现RN没有给提供RadioButton和Rad ...
- sqlyog Can't connect to MySQL server on localhost (0)
https://blog.csdn.net/l1336037686/article/details/78940223
- Springboot自定义过滤器Filter
前言:自己写了个Springboot项目,最近写的功能越来越多,结合业务已经要写过滤器Filter来过滤处理一些请求. 在网上看了几篇博客,总结如下: 过滤器配置方式有两种: 1.通过@WebFilt ...
- C# Note29: Close()和Dispose()的区别
待更! 深入解析Close()和Dispose()的区别
- vue-axios的application/x-www-form-urlencod的post请求无法解析参数
vue-axios的post会先将对象转为json然后再根据headers的设置再转一次格式,可以将参数先用qs.stringify()转一次再传输
- ABP 番外篇-容器
一. @using YD.CloudTimetable.Web.Areas.AppAreaName.Startup @{ ViewBag.CurrentPageName = AppAreaNamePa ...