【XSY2470】lcm 数学
题目大意
\(t\)组询问, 每组询问给定\(n\),求\(\sum_{k=1}^n[n,k]\),其中\([a,b]\)表示\(a\)和\(b\)的最小公倍数 .
\(t\leq 300000,n\leq 1000000\)
题解
\sum_{k=1}^n[k,n]&=n\sum_{k=1}^n\frac{k}{(k,n)}\\
&=n\sum_{p|n}\frac{1}{p}\sum_{k=1}^nk[(k,n)=p]\\
&=n\sum_{p|n}\sum_{k=1}^{\lfloor\frac{n}{p}\rfloor}k[(k,\frac{n}{p})=1]\\
&=n\sum_{p|n}\frac{\frac{n}{p}\phi(\frac{n}{p})+[\frac{n}{p}=1]}{2}\\
&=n\sum_{p|n}\frac{p\phi(p)+[p=1]}{2}
\end{align}
\]
用线性筛或者其他方法处理出\(\phi\)函数,调和级数的复杂度预处理,每次查表。或者枚举因子。
时间复杂度:\(O(n\log n)\)或\(O(n+t\sqrt{n})\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<map>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
int miu[1000010];
int phi[1000010];
int p[1000010];
int b[1000010];
ll e[1000010];
ll f[1000010];
int cnt;
int maxn=1000000;
map<int,ll> d;
void init()
{
memset(b,0,sizeof b);
int i,j;
cnt=0;
for(i=2;i<=maxn;i++)
{
if(!b[i])
{
p[++cnt]=i;
miu[i]=-1;
phi[i]=i-1;
}
for(j=1;j<=cnt&&i*p[j]<=maxn;j++)
{
b[i*p[j]]=1;
if(i%p[j]==0)
{
miu[i*p[j]]=0;
phi[i*p[j]]=phi[i]*p[j];
break;
}
miu[i*p[j]]=-miu[i];
phi[i*p[j]]=phi[i]*phi[p[j]];
}
}
e[1]=1;
for(i=2;i<=maxn;i++)
e[i]=(ll(i)*phi[i])/2;
for(i=1;i<=maxn;i++)
for(j=i;j<=maxn;j+=i)
f[j]+=e[i];
}
void solve()
{
int n;
scanf("%d",&n);
printf("%lld\n",f[n]*n);
}
int main()
{
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
init();
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}
【XSY2470】lcm 数学的更多相关文章
- hdu 4497 GCD and LCM 数学
GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...
- Codeforces Round #613 (Div. 2) C. Fadi and LCM (数学)
题意:给你一个正整数\(x\),找两个正整数\(a\),\(b\),使得\(lcm(a,b)=x\),并且\(max(a,b)\)最小. 题解:我们知道,\(lcm(a,b)=a*b/gcd(a,b) ...
- Codeforces #6241 div2 C. Orac and LCM (数学)
题意:给你一个数列,求所有子序列对的\(lcm\),然后求这些所有\(lcm\)的\(gcd\). 题解:我们对所有数分解质因数,这里我们首先要知道一个定理: 对于\(n\)个数,假如某个质数\( ...
- 一位学长的ACM总结(感触颇深)
发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...
- acdream.LCM Challenge(数学推导)
LCM Challenge Time Limit:1000MS Memory Limit:64000KB 64bit IO Format:%lld & %llu Submit ...
- UVA 10892 LCM Cardinality 数学
A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...
- HDU 5584 LCM Walk 数学
LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...
- Codeforces Round #328 (Div. 2) C. The Big Race 数学.lcm
C. The Big Race Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/592/probl ...
- hdu 5584 LCM Walk(数学推导公式,规律)
Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...
随机推荐
- (第十三周)评论Final发布II
按课上展示的顺序对每组进行点评:(性能.功能.UI.部署) 1. Nice! 项目:约跑软件 软件操作的响应很快,俩人进行聊天时可以实现消息的及时传递.功能主要有:注册账号.登录.创建/删除跑步计划 ...
- 使用Charles对iPhone进行Http(s)请求拦截(抓包)
首先准备工具 1> Charles (下载对应操作系统的安装包进行安装,本文使用 macOS 进行演示) 2> iPhone (本文使用SE,系统版本:iOS 10) 开始 首先,对Cha ...
- async并发处理
- MySQL 的两个特殊属性 unsigned与 zerofill
1 unsigned unsigned 就是将数字类型无符号化, 例如 int 型的范围:-2^31 ~ 2^31 - 1,而unsigned int的范围:0 ~ 2^32.看起来unsigned ...
- Oracle undo 表空间不可用
由于某次不小心操作,在切换表空间时没有成功,由于把undo的配置参数 undo_management值设置为MANUAL所以在启动数据库时没有报任何错误,但是给表插入数据时报错了,回滚段不可用的错误. ...
- mybatis两种开发方式
本文首先讲解从JDBC到mybatis的演变过程,然后是使用mybatis进行开发的两种方式. 一 JDBC的使用及其优化 1.使用JDBC进行数据库操作 加载JDBC驱动: 建立并获取数据库连接: ...
- MyBatis映射文件2(不支持自增的数据库解决方案/参数处理[单参、多参、命名参数])
针对Oracle不支持自增的解决方案 Oracle不支持自增,但是它使用序列来模拟自增,每次插入数据的主键是从序列中拿到的值,那么如何获取这个值呢? <insert id="addEm ...
- vue中的适配:px2rem
这应该是vue项目在适配移动端时候,最简单的方法之一下面是基本步骤(使用cnpm)1.下载并引入lib-flexible cnpm install --save lib-flexible 在main. ...
- idea 创建的spingmvc 引入jquery后jquery函数始终不执行的原因
- Python基础知识2-内置数据结构(下)
bytes.bytearray #思考下面例子: a = 1 b = a print(a == b)#True print(a is b)#True print(id(a) is id(b))#Fal ...