链接:http://acm.hdu.edu.cn/showproblem.php?pid=4035

题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。

设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。

叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);

非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);

设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;

对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);

对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei;

从叶子结点开始,直到算出 A1,B1,C1;

E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...

转载自博客:https://blog.csdn.net/morgan_xww/article/details/6776947/

代码:

#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
cin >> n;
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
cin >> s >> t;
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
cin >> k[i] >> e[i];
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}

Maze-hdu4035(DP求概率)的更多相关文章

  1. hdu4035 Maze (树上dp求期望)

    dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) 2.找到出口,走出迷宫 ...

  2. CoderForce 148D-Bag of mice (概率DP求概率)

    题目大意:美女与野兽在玩画鸽子的游戏.鸽子在用黑布遮住的笼子里,白色的有w只,黑色的有b只,每次拿出一只作画,谁先画到白色的鸽子谁就赢.美女首先画,因为野兽太丑,它每次画的时候都会吓跑一只鸽子,所有出 ...

  3. HDU-4089 Activation (概率DP求概率)

    题目大意:一款新游戏注册账号时,有n个用户在排队.每处理一个用户的信息时,可能会出现下面四种情况: 1.处理失败,重新处理,处理信息仍然在队头,发生的概率为p1: 2.处理错误,处理信息到队尾重新排队 ...

  4. A Dangerous Maze (II) LightOJ - 1395(概率dp)

    A Dangerous Maze (II) LightOJ - 1395(概率dp) 这题是Light Oj 1027的加强版,1027那道是无记忆的. 题意: 有n扇门,每次你可以选择其中一扇.xi ...

  5. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  6. hdu3076--ssworld VS DDD(概率dp第三弹,求概率)

    ssworld VS DDD Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  7. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  8. Poj 2096 (dp求期望 入门)

    / dp求期望的题. 题意:一个软件有s个子系统,会产生n种bug. 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中. 求找到所有的n种bug,且每个子系统都找到bug,这样所要 ...

  9. POJ 2096 (dp求期望)

    A - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

随机推荐

  1. ADO.NET连接字符串大全---各种数据库的连接字符串

    ADO.NET连接字符串大全 ADO.NET连接字符串 名称 ADO.NET连接字符串 说明 ADO.NET连接字符串:SQL Server,SQL Server 2005,ACCESS,Oracle ...

  2. oracle 查询数据库的约束条件

    1.查找表的所有索引(包括索引名,类型,构成列): select t.*,i.index_type from user_ind_columns t,user_indexes i where t.ind ...

  3. [原著]java或者Js 代码逻辑来处理 突破 oracle sql “IN”长度的极限的问题

    注:本文出自:博主自己研究验证可行   [原著]java或者Js  代码逻辑来处理  突破 oracle  sql "IN"长度的极限的问题    在很多的时候 使用 select ...

  4. mongodb 数据库中 的聚合操作

  5. day 08字符编码 文件处理

    字符编码1.软件启动流程(打开notepad++文档)从硬盘将软件加载到内存上加载test.txt到内存中执行notepad++的代码,将test.txt打到屏幕上 python解释器也是一个应用软件 ...

  6. D3.js 添加zoom缩放功能后dblclick双击也会放大的问题

    svg.call(zoom).on("dblclick.zoom", null); https://stackoverflow.com/questions/25007466/d3- ...

  7. sort方法实际应用详解---javascript中对一个对象数组按照对象某个属性进行排序

    转载: 查看原文 在javascript中,对象和数组是两种不同的类型,这和php中的数组概念不同.在javascript中,也有一些精妙的算法,用来对一些对象进行排序.我在面试迅雷的时候,也拿到一道 ...

  8. C++ Primer 笔记——union

    1.union是一种特殊的类.一个union可以有多个数据成员,但是在任意时刻,只有一个数据成员可以有值.当我们给union的某个成员赋值之后,该union的其他成员就变成未定义的状态了.分配给一个u ...

  9. GoLang函数参数的传递练习

    春节买的GO方面的书,看了一次.现在撸一些代码,作为练习. // Copyright © 2019 NAME HERE <EMAIL ADDRESS> // // Licensed und ...

  10. JVM 方法区内存扩大 以及开启GC

    因为应用使用了OSGi框架,<深入理解JAVA虚拟机>中对使用OSGi时可能产生的方法区溢出有所描述 第一部分: 第二部分 可见,OSGi会动态生成大量Class,在OSGi中,即使是同一 ...