Dijkstra算法之 Java详解
转载:http://www.cnblogs.com/skywang12345/
迪杰斯特拉算法介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
基本思想
通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。
此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。
初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。
操作步骤
(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。
单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
迪杰斯特拉算法图解
以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。
初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。
第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。
第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。
第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。
此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
迪杰斯特拉算法的代码说明
以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。
1. 基本定义
public class MatrixUDG {
private int mEdgNum; // 边的数量
private char[] mVexs; // 顶点集合
private int[][] mMatrix; // 邻接矩阵
private static final int INF = Integer.MAX_VALUE; // 最大值
...
}
MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。
2. 迪杰斯特拉算法
/*
* Dijkstra最短路径。
* 即,统计图中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
public void dijkstra(int vs, int[] prev, int[] dist) {
// flag[i]=true表示"顶点vs"到"顶点i"的最短路径已成功获取
boolean[] flag = new boolean[mVexs.length];
// 初始化
for (int i = 0; i < mVexs.length; i++) {
flag[i] = false; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = mMatrix[vs][i]; // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}
// 对"顶点vs"自身进行初始化
flag[vs] = true;
dist[vs] = 0;
// 遍历mVexs.length-1次;每次找出一个顶点的最短路径。
int k=0;
for (int i = 1; i < mVexs.length; i++) {
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
int min = INF;
for (int j = 0; j < mVexs.length; j++) {
if (flag[j]==false && dist[j]<min) {
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = true;
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (int j = 0; j < mVexs.length; j++) {
int tmp = (mMatrix[k][j]==INF ? INF : (min + mMatrix[k][j]));
if (flag[j]==false && (tmp<dist[j]) ) {
dist[j] = tmp;
prev[j] = k;
}
}
}
// 打印dijkstra最短路径的结果
System.out.printf("dijkstra(%c): \n", mVexs[vs]);
for (int i=0; i < mVexs.length; i++)
System.out.printf(" shortest(%c, %c)=%d\n", mVexs[vs], mVexs[i], dist[i]);
}
迪杰斯特拉算法的源码
这里分别给出"邻接矩阵图"和"邻接表图"的迪杰斯特拉算法源码。
Dijkstra算法之 Java详解的更多相关文章
- 最短路径-迪杰斯特拉(dijkstra)算法及优化详解
简介: dijkstra算法解决图论中源点到任意一点的最短路径. 算法思想: 算法特点: dijkstra算法解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算 ...
- Dijkstra算法堆优化详解
DIJ算法的堆优化 DIJ算法的时间复杂度是\(O(n^2)\)的,在一些题目中,这个复杂度显然不满足要求.所以我们需要继续探讨DIJ算法的优化方式. 堆优化的原理 堆优化,顾名思义,就是用堆进行优化 ...
- JVM垃圾回收算法及回收器详解
引言 本文主要讲述JVM中几种常见的垃圾回收算法和相关的垃圾回收器,以及常见的和GC相关的性能调优参数. GC Roots 我们先来了解一下在Java中是如何判断一个对象的生死的,有些语言比如Pyth ...
- Java 详解 JVM 工作原理和流程
Java 详解 JVM 工作原理和流程 作为一名Java使用者,掌握JVM的体系结构也是必须的.说起Java,人们首先想到的是Java编程语言,然而事实上,Java是一种技术,它由四方面组成:Java ...
- Floyd算法(三)之 Java详解
前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...
- 逆向工程生成的Mapper.xml以及*Example.java详解
逆向工程生成的接口中的方法详解 在我上一篇的博客中讲解了如何使用Mybayis逆向工程针对单表自动生成mapper.java.mapper.xml.实体类,今天我们先针对mapper.java接口中的 ...
- 【机器学习】【条件随机场CRF-2】CRF的预测算法之维特比算法(viterbi alg) 详解 + 示例讲解 + Python实现
1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(V ...
- 最短路径Floyd算法【图文详解】
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被 ...
- Dijkstra算法(三)之 Java详解
http://www.cnblogs.com/skywang12345/p/3711516.html
随机推荐
- Oracle 高水位说明和释放表空间,加快表的查询速度
高水位的介绍 数据库运行了一段时间,经过一些列的删除.插入.更改操作有些表的高水位线就有可能和实际的表存储数据的情况相差特别多,为了提高检索该表的效率,建议对这些表进行收缩: 查找高水位线的表 查找表 ...
- Confluence 6 尝试从 XML 备份中恢复时解决错误
错误可能是因为数据库突然不可访问而产生.也有可能是你备份文件有问题,你需要找到你 XML 备份文件中违反数据库规定的记录修改这个记录后再创建一个新的 XML 备份: 在实例开始恢复的时候,请按照下面的 ...
- python之dict与set实现原理之hash算法
理解不透彻,下回分解 http://www.cnblogs.com/pengsixiong/p/5326893.html https://blog.csdn.net/zhao_crystal/arti ...
- spring cloud config--client
概述 之前我们简单的搭建了一个单点的config-server服务,实现配置文件的统一管理,本次文章将实现config-client是如何从config-server中获取到统一配置文件信息的 1.创 ...
- 步步为营-84-数字转化为金额的Js+enter键取消页面刷新
说明:来不及细说了,老铁快上车 function fmoney(s, n) { console.log(s); n = n > && n <= ? n : ; s = pa ...
- IDM的Google商店插件
官方扩展链接:https://chrome.google.com/webstore/detail/idm-integration-module/ngpampappnmepgilojfohadhhmbh ...
- SQL Server中Text和varchar(max) 区别
SQL Server 2005之后版本:请使用 varchar(max).nvarchar(max) 和 varbinary(max) 数据类型,而不要使用 text.ntext 和 image 数据 ...
- k8s中的api server的ca证书,可以和front proxy ca证书一样么?
答案是: 绝对不可以! 因为请求先验证的是 --requestheader-client-ca-file CA 然后才是--client-ca-file. . 那获取的用户名就会通不过了. 所以会影响 ...
- 运维基础——Zabbix 设置Redis监控
https://blog.csdn.net/xundh/article/details/77604357
- Android设备一对多录屏直播--(UDP组播连接,Tcp传输)
原文:https://blog.csdn.net/sunmmer123/article/details/82734245 近期需要学习流媒体知识,做一个Android设备相互投屏Demo,因此找到了这 ...