BZOJ2655: calc(dp 拉格朗日插值)
题意
Sol
首先不难想到一个dp
设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数
转移的时候判断一下最后一个位置是否是\(j\)
\]
for(int i = 0; i <= A; i++) f[0][i] = 1;
for(int i = 1; i <= N; i++)
for(int j = 1; j <= A; j++)
f[i][j] = add(f[i][j - 1], mul(f[i - 1][j - 1], j));
cout << mul(f[N][A], fac[N]);
发现还是不好搞,把转移拆开
\(f[i][j] = \sum_{k = 0}^{j - 1} f[i - 1][k] * (k + 1)\)
这个转移就非常有意思了
我们如果把\(i\)看成列,\(k\)看成行,那么转移的时候实际上就是先对第\(k\)行乘上一个系数\(k\),然后再求和
如果我们把第\(i - 1\)列看成一个\(t\)次多项式,显然第\(i\)列是一个\(t+2\)次多项式(求和算一次,乘系数算一次)
这样的话第\(i\)列就是一个最高\(2i+1\)次多项式
插一插就好了
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 10001;
int A, N, Lim, mod, f[501][MAXN], fac[MAXN], y[MAXN];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
void add2(int &x, int y) {
if(x + y < 0) x = (x + y + mod);
else x = (x + y >= mod ? x + y - mod : x + y);
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int Large(int *y, int k) {
static int x[MAXN], ans = 0;
for(int i = 1; i <= Lim; i++) x[i] = i;
for(int i = 0; i <= Lim; i++) {
int up = y[i], down = 1;
for(int j = 0; j <= Lim; j++) {
if(i == j) continue;
up = mul(up, add(k, -x[j]));
down = mul(down, add(x[i], -x[j]));
}
add2(ans, mul(up, fp(down, mod - 2)));
}
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
// freopen("a.out", "w", stdout);
#endif
cin >> A >> N >> mod; Lim = 2 * N + 1;
fac[0] = 1; for(int i = 1; i <= N; i++) fac[i] = mul(i, fac[i - 1]);
for(int i = 0; i <= Lim; i++) f[0][i] = 1;
for(int i = 1; i <= N; i++) {
for(int j = 1; j <= Lim; j++) {
f[i][j] = add(f[i][j - 1], mul(f[i - 1][j - 1], j));
}
}
for(int i = 0; i <= Lim; i++) y[i] = f[N][i];
cout << mul(Large(y, A), fac[N]);
return 0;
}
BZOJ2655: calc(dp 拉格朗日插值)的更多相关文章
- BZOJ2655 Calc - dp 拉格朗日插值法
BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...
- 【BZOJ2655】Calc(拉格朗日插值,动态规划)
[BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...
- 【BZOJ2655】calc(拉格朗日插值)
bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的 ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)
这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...
- bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...
- P4463 [国家集训队] calc(拉格朗日插值)
传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1] ...
- 【bzoj4559】[JLoi2016]成绩比较(dp+拉格朗日插值)
bzoj 题意: 有\(n\)位同学,\(m\)门课. 一位同学在第\(i\)门课上面获得的分数上限为\(u_i\). 定义同学\(A\)碾压同学\(B\)为每一课\(A\)同学的成绩都不低于\(B\ ...
- F. Cowmpany Cowmpensation dp+拉格朗日插值
题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...
随机推荐
- iOS学习——iOS开发小知识点集合
在iOS学习和开发过程中,经常会遇到一些很小的知识点和问题,一两句话就可以解释清楚了,这样的知识点写一篇随笔又没有必要,但是又想mark一下,以备不时之需,所以就有了本文.后面遇到一些小的知识点会不断 ...
- python基础-变量运算符(3)
一.注释 注释就是对代码的解释和说明.目的是为了让别人和自己很容易看懂.为了让别人一看就知道这段代码是做什么用的.正确的程序注释一般包括序言性注释和功能性注释.序言性注释的主要内容包括模块的接口.数据 ...
- iReport 5.6.0 安装包下载&安装
iReport 5.6.0 下载 方式有两种: 1.在官网社区上下载,下载地址:https://community.jaspersoft.com/project/ireport-designer/re ...
- 剑指offer【03】- 从尾到头打印链表(4种实现方法)
题目:从尾到头打印链表 考点:链表 题目描述:输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 法一:ArrayList头插法 /** * public class ListNode ...
- 经典中的品味:第一章 C++的Hello,World!
摘要: 原创出处: http://www.cnblogs.com/Alandre/ 泥沙砖瓦浆木匠 希望转载,保留摘要,谢谢! "程序设计要通过编写程序的实践来学习"-Brian ...
- github提交代码contributions不显示小绿块
问题描述: 最近发现一个问题就是不管是提交新增的代码还是修改后提交的代码在github的contributions上都不显示贡献小绿块. 于是我在 github help 里面找到了答案: 官方链接如 ...
- .Net程序员学用Oracle系列(14):子查询、集合查询
1.子查询 1.1.子查询简介 1.2.WITH 子查询 2.集合查询 2.1.UNION 和 UNION ALL 2.2.MINUS 2.3.INTERSECT 2.4.集合运算与 ORDER BY ...
- web进修之—Hibernate HQL(7)
概述 HQL是Hibernate封装成为面向对象的数据库查询语言,具有如下特点: 面向对象,包括继承.多态和关联之类的概念,SQL操作的数据库的表,HQL更像是操作对象 大小写敏感,只对对象和属性敏感 ...
- 【Git】时光机命令—Git命令
cd c: 进入C盘 mkdir learngit 创建名为learngit的文件夹 cd learngit 进入learngit文件夹 pwd 显示当前目录路径 gi ...
- 使用 Mutex 实现进程间同步
我们知道 Mutex 互斥量是可以用在线程间同步的,线程之间共享进程的数据,mutex 就可以直接引用.而进程有自己独立的内存空间,要怎样将它应用在进程间同步呢?为了达到这一目的,可以在 pthrea ...