Hard!

题目描述:

给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  1. 插入一个字符
  2. 删除一个字符
  3. 替换一个字符

示例 1:

输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

解题思路:

这道题让求从一个字符串转变到另一个字符串需要的变换步骤,共有三种变换方式,插入一个字符,删除一个字符,和替换一个字符。根据以往的经验,对于字符串相关的题目十有八九都是用动态规划Dynamic Programming来解,这道题也不例外。

这道题我们需要维护一个二维的数组dp,其中dp[i][j]表示从word1的前i个字符转换到word2的前j个字符所需要的步骤。那我们可以先给这个二维数组dp的第一行第一列赋值,这个很简单,因为第一行和第一列对应的总有一个字符串是空串,于是转换步骤完全是另一个字符串的长度。跟以往的DP题目类似,难点还是在于找出递推式,我们可以举个例子来看,比如word1是“bbc",word2是”abcd“,那么我们可以得到dp数组如下:

  Ø a b c d
Ø 0 1 2 3 4
b 1 1 2 3
b 2 2 2 3
c 3 3 2 2

通过观察可以发现,当word1[i] == word2[j]时,dp[i][j] = dp[i - 1][j - 1],其他情况时,dp[i][j]是其左,左上,上的三个值中的最小值加1,那么可以得到递推式为:

dp[i][j] =      /    dp[i - 1][j - 1]                                                                   if word1[i - 1] == word2[j - 1]

\    min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1            else

C++解法一:

 class Solution {
public:
int minDistance(string word1, string word2) {
int n1 = word1.size(), n2 = word2.size();
int dp[n1 + ][n2 + ];
for (int i = ; i <= n1; ++i) dp[i][] = i;
for (int i = ; i <= n2; ++i) dp[][i] = i;
for (int i = ; i <= n1; ++i) {
for (int j = ; j <= n2; ++j) {
if (word1[i - ] == word2[j - ]) {
dp[i][j] = dp[i - ][j - ];
} else {
dp[i][j] = min(dp[i - ][j - ], min(dp[i - ][j], dp[i][j - ])) + ;
}
}
}
return dp[n1][n2];
}
};

LeetCode(72):编辑距离的更多相关文章

  1. [leetcode] 72. 编辑距离(二维动态规划)

    72. 编辑距离 再次验证leetcode的评判机有问题啊!同样的代码,第一次提交超时,第二次提交就通过了! 此题用动态规划解决. 这题一开始还真难到我了,琢磨半天没有思路.于是乎去了网上喵了下题解看 ...

  2. Java实现 LeetCode 72 编辑距离

    72. 编辑距离 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字 ...

  3. [LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)

    https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-mian-shi-ti-xiang-jie-by-labu ...

  4. [LeetCode]72. 编辑距离(DP)

    题目 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例 1 ...

  5. [Leetcode 72]编辑距离 Edit Distance

    [题目] Given two words word1 and word2, find the minimum number of operations required to convert word ...

  6. leetcode 72 编辑距离 JAVA

    题目: 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例  ...

  7. leetcode 72. 编辑距离

    /***** 定义状态: DP[i][j]其中i表示word1前i个字符,j表示Word2前i个字符 DP[i][j]表示单词1前i个字符匹配单词2前j个字符,最少变换次数: 状态转移: for i: ...

  8. leetcode 72.编辑距离(dp)

    链接:https://leetcode-cn.com/problems/edit-distance/submissions/ 设dp[i][j]表示串s1前i个字符变换成串s2前j个字符所需要的最小操 ...

  9. 第30章 LeetCode 72 编辑距离

    每日一句 A flower cannot blossom without sunshine, and man cannot live without love. 花没有阳光就不能盛开,人没有爱就不能生 ...

  10. Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)

    Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...

随机推荐

  1. 服务器管理员密码修改后SQL_Server_2008无法启动

    服务器管理员administrator密码修改后SQL_Server_2008无法启动 其实很简单,我发现在网上找这个相关的问题,什么说法都有,把人绕的晕头转向的 我来教大家如何解决这个问题: 首先我 ...

  2. 【译】第五篇 SQL Server安全架构和安全

    本篇文章是SQL Server安全系列的第五篇,详细内容请参考原文. 架构本质上是一个数据库对象,其他对象的一个容器,在复杂的数据库中它能够很容易的管理各组对象.架构具有重要的安全功能.在这一篇你会学 ...

  3. jq的css方法

    读属性: $(selector).css(name) 设置属性: 法一: $(selector).css(name,value) 法二: $(selector).css(name,function(i ...

  4. E - Reachability from the Capital

    E - Reachability from the Capital  CodeForces - 999E 题目链接:https://vjudge.net/contest/236513#problem/ ...

  5. renren-security旧版本 分模块 的模块之间关系浅析

    Maven结构,一个父模块 六个子模块 七个pom.xml: \git\renren-security\pom.xml <modules> <module>renren-com ...

  6. RPO攻击 & share your mind

    参考文章: https://xz.aliyun.com/t/2220 http://www.thespanner.co.uk/2014/03/21/rpo/ https://www.lorexxar. ...

  7. windows 10下sublime text3环境的搭建以及配置python开发环境

    1 - 安装Sublime Text 3 到官网下载对应的版本,如下: OS X (10.7 or later is required) Windows - also available as a p ...

  8. springboot中spring.profiles.active来引入多个properties文件 & Springboot获取容器中对象

    1.    引入多个properties文件 很多时候,我们项目在开发环境和生成环境的环境配置是不一样的,例如,数据库配置,在开发的时候,我们一般用测试数据库,而在生产环境的时候,我们是用正式的数据, ...

  9. CF1095E Almost Regular Bracket Sequence

    题目地址:CF1095E Almost Regular Bracket Sequence 真的是尬,Div.3都没AK,难受QWQ 就死在这道水题上(水题都切不了,我太菜了) 看了题解,发现题解有错, ...

  10. requests库入门10-超时,错误与异常

    在实际发布到生产上的接口测试代码,都会加上超时的设置,当服务器超过一定时间没有响应,会报出超时异常.因为requests会自动等待响应.如果不加上超时的设置,可能脚本会一直卡在那里.. 超时设置在请求 ...