[NOI2010]海拔(最小割)
题目描述
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define N 502
#define mm make_pair
using namespace std;
priority_queue<pair<int,int> >q;
bool vis[N*N];
int id[N][N],dis[N*N],tot,head[N*N],n,top;
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to,l;}e[N*N*];
inline void add(int u,int v,int l){
e[++tot].n=head[u];e[tot].to=v;head[u]=tot;e[tot].l=l;
}
int main(){
n=rd();int x;
for(int i=;i<=n;++i)for(int j=;j<=n;++j)id[i][j]=++top;top++;
for(int i=;i<=n;++i)id[i][]=id[n+][i]=top;
// for(int i=1;i<=n;++i)id[0][i]=id[i][n+1]=top;
for(int i=;i<=n+;++i)
for(int j=;j<=n;++j){
x=rd();add(id[i-][j],id[i][j],x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n+;++j){
x=rd();add(id[i][j],id[i][j-],x);
}
for(int i=;i<=n+;++i)
for(int j=;j<=n;++j){
x=rd();add(id[i][j],id[i-][j],x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n+;++j){
x=rd();add(id[i][j-],id[i][j],x);
}
memset(dis,0x3f,sizeof(dis));dis[]=;
q.push(mm(,));
while(!q.empty()){
int u=q.top().second;q.pop();
if(vis[u])continue;vis[u]=;
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(dis[v]>dis[u]+e[i].l){
dis[v]=dis[u]+e[i].l;
q.push(mm(-dis[v],v));
}
}
}
printf("%d",dis[top]);
return ;
}
[NOI2010]海拔(最小割)的更多相关文章
- BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)
题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...
- 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路
题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...
- bzoj 2007 [Noi2010]海拔——最小割转最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...
- [NOI2010]海拔——最小割+对偶图
题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...
- 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)
2007: [Noi2010]海拔 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2095 Solved: 1002[Submit][Status] ...
- B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij
B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向 ...
- 【BZOJ2007】【NOI2010】海拔(最小割,平面图转对偶图,最短路)
[BZOJ2007][NOI2010]海拔(最小割,平面图转对偶图,最短路) 题面 BZOJ 洛谷 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域. ...
- 【NOI2010】海拔【平面图最小割】
[问题描写叙述] YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见.能够将YT市看作 一个正方形,每个区域也可看作一个正方形.从而.YT城市中包含(n+1)×(n+ ...
- P2046 [NOI2010]海拔 平面图转对偶图(最小割-》最短路)
$ \color{#0066ff}{ 题目描述 }$ YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看作一个正方形. ...
随机推荐
- MySql concat与字符转义
mysql函数之四:concat() mysql 多个字段拼接 - duanxz - 博客园https://www.cnblogs.com/duanxz/p/5098875.html mysql 多个 ...
- 三、taro路由及设计稿及尺寸单位
一.路由配置 路由配置跟小程序一样,在入口文件的 config 配置中指定好 pages 通过taro API 跳转,详见导航 // 跳转到目的页面,打开新页面 Taro.navigateTo({ u ...
- hadoop第一个例子
Java.io.URL 1.编写java程序 package com.company; import java.io.IOException; import java.io.InputStream; ...
- python设计模式第二十三天【状态模式】
1.应用场景 (1)通过改变对象的内部状态从而改变对象的行为,一般表现为状态的顺序执行 2.代码实现 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from ...
- git 提交顺序
0. git branch # 查看自己是哪个分支:先确定自己现在是哪个分支 1. git fetch # 将远程主机的更新,全部取回本地.如果只想取回特定分支的更新,可以指定分支名:git ...
- orcale三表连接查询
SELECT w.ZDBH,w.HEATINGANDAIRCONDITIONERID, w.ZDMC, w.CZBH, w.CZMC, w.CNXS, w.ND, w.KTJF, w.K ...
- 安装.Net Standard 2.0, Impressive
此版本的.NET Standard现在支持大约33K的API,与.NET Standard 1.x支持的14K API相比.好的是大部分API来自.NET Framework.这使得生活更容易将代码移 ...
- 想要配置文件生效 需要通过添加到web.xml加载到内存中
想要配置文件生效 需要通过添加到web.xml加载到内存中
- hdu-1711(kmp)
题意:给你两串数字,问你第二串数字第一次出现在第一串数字的位置,没有输出-1: 解题思路:其是就是字符串匹配,就是这里是数字匹配,把char数组改成int型就可以了: 代码: #include< ...
- Nginx 反向代理接收用户包体方式
陶辉91课 如果proxy_request_buffering 设置为on的时候是等待nginx读取完包体后再发送上游服务器 一般依赖于nginx处理能力 client_body_in_file_o ...