「SHOI2015」(LOJ2038)超能粒子炮・改
传送门:Here
一句话题意:给定$ t$次询问,每次读入$n,k,$求$ \sum_{i=0}^kC_n^k\ mod\ 2333$,
其中$ t \leq 100000$,$n,k \leq 10^{18},$
前置知识:普通卢卡斯定理 $ C_n^k= C_{n \% p}^{k \% p}*C_{n/p}^{k/p} \% p$
我们定义$ S(n,k)=\sum_{i=0}^kC_n^k \% p$
考虑每次询问将式子展开:
$ S(n,k)= \sum\limits_{i=0}^kC_{n/p}^{i/p}*C_{n \%p}^{i \%p}\ mod\ p $
$ =\sum\limits_{i=0}^{k/p-1}C_{n/p}^i* \sum\limits_{j=0}^{p-1}C_{n \%p}^j+ \sum\limits_{i=k/p*p}^kC_{n/p}^{k/p}*C_{n \%p}^{i \%p}$
$ =\sum\limits_{i=0}^{k/p-1}C_{n/p}^i* \sum\limits_{j=0}^{p-1}C_{n \%p}^j+ \sum\limits_{i=0}^{k \%p}C_{n \%p}^{i}*C_{n/p}^{k/p}$
则有$ S(n,k)=S(n/p,k/p)*S(n \%p,p-1)+S(n \%p,k \%p)*C(n/p,k/p) (mod\ p)$
我们可以预处理$ i,j \leq p的s[i][j]和c[i][j]$
那么对于该式子只要递归做第一项以及用卢卡斯求组合数取模的值即可
my code:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rt register int
#define ll long long
#define p 2333
#define r read()
using namespace std;
ll read()
{
ll x = ; int ch = getchar();
while (ch < '' || ch > '') ch = getchar();
while (ch >= '' && ch <= '') x = x * + ch - '', ch = getchar(); return x;
}
void write(ll y)
{
if (y > ) write(y / );
putchar(y % + '');
}
int i,j,k,m,n,x,y,z;
int c[][],s[][];
int C(const ll x,const ll y)
{
return (x<p)?c[x][y]:C(x/p,y/p)*c[x%p][y%p]%p;
}
int S(const ll n,const ll k)
{
return (n<p)?s[n][k]:(s[n%p][p-]*S(n/p,k/p-)+C(n/p,k/p)*s[n%p][k%p])%p;
}
int main()
{
c[][]=s[][]=;
for(rt i=;i<=p;i++)s[][i]=;
for(rt i=;i<=p;i++)
{
for(rt j=;j<=i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%p,s[i][j]=(s[i][j-]+c[i][j])%p;
for(rt j=i+;j<=p;j++)s[i][j]=s[i][j-];
}
for(rt t=read();t;t--)
{
ll n=read(),k=read();
write(S(n,k)),putchar('\n');
}
return ;
}
因为最多只有log层所以单次复杂度为log次Lucas,能轻松通过此题
「SHOI2015」(LOJ2038)超能粒子炮・改的更多相关文章
- loj#2038. 「SHOI2015」超能粒子炮・改
题目链接 loj#2038. 「SHOI2015」超能粒子炮・改 题解 卢卡斯定理 之后对于%p分类 剩下的是个子问题递归 n,k小于p的S可以预处理,C可以卢卡斯算 代码 #include<c ...
- 「SHOI2015」超能粒子炮・改
「SHOI2015」超能粒子炮・改 给你\(T\)组询问,每组询问给定参数\(n,k\),计算\(\sum\limits_{i=0}^k\dbinom{n}{i}\). \(T\leq10^5,n,k ...
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告
P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...
- bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...
- BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理
BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...
- Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)
Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...
- BZOJ 4591 【SHOI2015】 超能粒子炮·改
题目链接:超能粒子炮·改 这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了. 我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一 ...
随机推荐
- js小结
1,浏览器对json支持的方法: JSON.parse(jsonstr);将string转为json的对象. JSON.stringify(jsonobj);将json对象转为string. 2,js ...
- react-native---rn中的修饰组件(TouchableHightlight、TouchableOpacity、TouchableNativeFeedback等)
react-native中View组件这是单纯的视图容器,并不能响应交互变化,绑定事件,rn提供了TouchableOpacity等封装组件以正确响应触摸操作. TouchableWithoutFee ...
- Vue+koa2开发一款全栈小程序(3.vue入门、Mpvue入门)
1.Vue-cli 1.新建一个vue项目 打开cmd 官方命令行工具 npm install -g vue-cli //安装脚手架 cd到你想要存放demo的目录下,然后 vue init webp ...
- github在网页编写readme之后的操作
study from : https://jingyan.baidu.com/article/f3e34a12a25bc8f5ea65354a.html
- c3p0配置文件(c3p0.properties.xml)解读
package cn.lijun.demo; import com.mchange.v2.c3p0.ComboPooledDataSource; import javax.sql.DataSource ...
- Linux系统诊断必备技能之一:lsof 用法详解!
lsof(list open files)是一个查看当前系统文件的工具.在linux环境下,任何事物都以文件的形式存在,用户通过文件不仅可以访问常规数据,还可以访问网络连接和硬件:如传输控制协议 (T ...
- python对象的多重继承
一个从多个父类继承过来的子类,可以访问所有父类的功能.并不推荐使用. 多重继承最简单有用的形式是mixin.假设在之前Contact类增加一个功能,允许给self.email发送一封邮件. class ...
- 集成学习算法汇总----Boosting和Bagging(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- NoSQL数据库Mongodb副本集架构(Replica Set)高可用部署
NoSQL数据库Mongodb副本集架构(Replica Set)高可用部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MongoDB 是一个基于分布式文件存储的数据库.由 C ...
- script ajax / XHR / XMLHttpRequest
s 利用XHR 调试发送form data表单数据,F5键刷新form表单URL ,http请求地址,获取token,提交. 如:http://pcp.cns*****.com/spcp-web/vm ...