CodeForces - 867E Buy Low Sell High (贪心 +小顶堆)
https://vjudge.net/problem/CodeForces-867E
题意
一个物品在n天内有n种价格,每天仅能进行买入或卖出或不作为一种操作,可以同时拥有多种物品,问交易后的最大利益。
分析
贪心的取,当然是低买高卖。当买卖的顺序需要斟酌。考虑用小顶堆(优先队列)来维护这过程,我们每次得到一个新的价格,将其和堆顶的价格比较,如果比堆顶的价格低,就直接放入堆中,如果比堆顶的价格高,就意味着我们可以提前以堆顶的价格买入一个物品,然后以当前价格卖出,因此我们可以算出本次收益加到总收益中,这样我们就要将堆顶pop掉,然后将本次价格push两次入堆,push两次是因为我们若以堆顶的价格买入,不一定最终是以当前价格卖出的,当前价格有可能只是我们贪心的一个跳板,例如价格1,2,3,10,如果我们以1买入,2卖出,3买入,10卖出我们只能获得8,然而如果我们以1买入,10卖出,2买入,3卖出就可以获得10,我们贪心的过程中肯定会1买入2卖出,而这次2卖出只是我们10卖出的跳板,并不一定是非要在2卖出。
因此将某价格加入两次的作用分别是:
1.做中间价
2.做所有可能买入价中的一个(就和比堆顶低的价格直接扔入堆中一样的作用)
- #include <iostream>
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <string>
- #include <algorithm>
- #include <cmath>
- #include <ctime>
- #include <vector>
- #include <queue>
- #include <map>
- #include <stack>
- #include <set>
- #include <bitset>
- using namespace std;
- typedef long long ll;
- typedef unsigned long long ull;
- #define ms(a, b) memset(a, b, sizeof(a))
- #define pb push_back
- #define mp make_pair
- #define pii pair<int, int>
- #define eps 0.0000000001
- #define IOS ios::sync_with_stdio(0);cin.tie(0);
- #define random(a, b) rand()*rand()%(b-a+1)+a
- #define pi acos(-1)
- const ll INF = 0x3f3f3f3f3f3f3f3fll;
- const int inf = 0x3f3f3f3f;
- const int maxn = + ;
- const int maxm = + ;
- const int mod = 1e9+;
- priority_queue<int,vector<int>,greater<int> >q;
- int main(){
- #ifdef LOCAL
- freopen("in.txt", "r", stdin);
- // freopen("output.txt", "w", stdout);
- #endif
- int n;
- scanf("%d",&n);
- int x;
- ll ans=;
- for(int i=;i<n;i++){
- scanf("%d",&x);
- if(!q.empty()&&q.top()<x){
- ans+=x-q.top();
- q.pop();
- q.push(x);
- }
- q.push(x);
- }
- printf("%lld\n",ans);
- return ;
- }
CodeForces - 867E Buy Low Sell High (贪心 +小顶堆)的更多相关文章
- POJ 1456 - Supermarket - [贪心+小顶堆]
题目链接:http://poj.org/problem?id=1456 Time Limit: 2000MS Memory Limit: 65536K Description A supermarke ...
- CF865D Buy Low Sell High 贪心
正解:贪心 解题报告: 传送门! 这题首先有个很显然的dp,太基础了不说QAQ 然后考虑dp是n2的,显然过不去,所以换一个角度 然后发现这题和普通的dp的题有什么不同呢?就它这儿是一天只能买一支股, ...
- 【CF865D】Buy Low Sell High(贪心)
[CF865D]Buy Low Sell High(贪心) 题面 洛谷 CF 题解 首先有一个\(O(n^2)\)的\(dp\)很显然,设\(f[i][j]\)表示前\(i\)天手中还有\(j\)股股 ...
- HDU 4006The kth great number(K大数 +小顶堆)
The kth great number Time Limit:1000MS Memory Limit:65768KB 64bit IO Format:%I64d & %I64 ...
- heap c++ 操作 大顶堆、小顶堆
在C++中,虽然堆不像 vector, set 之类的有已经实现的数据结构,但是在 algorithm.h 中实现了一些相关的模板函数.下面是一些示例应用 http://www.cplusplus.c ...
- python 基于小顶堆实现随机抽样
起因:之前用蓄水池抽样,算法精简,但直观性很差. 所以这次采用了简单的,为没一个行,赋值一个随机值,然后取 最大的K个作为,随机样本. 基本思路:为每一个行(record,记录,实体) 赋一个rand ...
- Python使用heapq实现小顶堆(TopK大)、大顶堆(BtmK小)
Python使用heapq实现小顶堆(TopK大).大顶堆(BtmK小) | 四号程序员 Python使用heapq实现小顶堆(TopK大).大顶堆(BtmK小) 4 Replies 需1求:给出N长 ...
- BZOJ 1150 - 数据备份Backup - [小顶堆][CTSC2007]
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1150 Time Limit: 10 Sec Memory Limit: 162 M De ...
- POJ 2442 - Sequence - [小顶堆][优先队列]
题目链接:http://poj.org/problem?id=2442 Time Limit: 6000MS Memory Limit: 65536K Description Given m sequ ...
随机推荐
- 【BZOJ3814】【清华集训2014】简单回路 状压DP
题目描述 给你一个\(n\times m\)的网格图和\(k\)个障碍,有\(q\)个询问,每次问你有多少个不同的不经过任何一个障碍点且经过\((x,y)\)与\((x+1,y)\)之间的简单回路 \ ...
- npm 常规错误
Unexpected end of JSON input while parsing near 意外结束.JSON解析期间 解决办法: npm cache clean --force 解释:Force ...
- 【Vijos】lxhgww的奇思妙想(长链剖分)
题面 给定一棵树,每次询问一个点的\(k\)次祖先,强制在线. Vijos 题解 长链剖分. 链接暂时咕咕咕了. 现在可以戳链接看题解了 #include<iostream> #inclu ...
- Codeforces | CF1037D 【Valid BFS?】
题目大意:给定一个\(n(1\leq n\leq 2\cdot10^5)\)个节点的树的\(n-1\)条边和这棵树的一个\(BFS\)序\(a_1,a_2,\dots,a_n\),判断这个\(BFS\ ...
- Distinct Values(2018hdu多校第一场)
给你一段长度为n的区间,然后在给你m个小区间,要求这m个小区间里的每个人都不能重复,请你输出字典序最小的方案. 我们可以开一个suf数组,表示我到我后面的不出现重复数字的区间至少需要到达的位置.所以对 ...
- MongoDB常用操作命令
查看所有数据库: > show dbs; 选定数据库: > use ECommerce; 查看当前数据库状态: > db.stats(); 查看当前数据库中所有集合: > sh ...
- css 多行文本的溢出显示省略号(移动端)
多行文本的溢出显示省略号(移动端) 一.单行文本的溢出显示省略号(通用) .mui-ellipsis { overflow: hidden; /*规定当文本溢出包含元素时发生的事情*/ white-s ...
- js定时器setInterval()与setTimeout()
js定时器setInterval()与setTimeout() 1.setTimeout(Expression,DelayTime),在DelayTime过后,将执行一次Expression,setT ...
- JS小积累(一)— 判断在线离线
JS小积累-判断在线离线 作者: 狐狸家的鱼 Github: 八至 if(window.navigator.onLine==true){ console.log('online'); ... } el ...
- 洛谷P1080 国王游戏
两个难点. 怎么想到的贪心? 首先确定算法: 显然不是数据结构题.转成图论也不太可能. 考虑DP:f[i][j]表示前i个人取j状态的最小最大值......2^1000,直接放弃. 因为出现了“最大值 ...