[NOI2002] 贪吃的九头龙
题目类型:树形DP
传送门:>Here<
题意:有一只九头龙要吃了一颗树,给出一棵\(N\)个节点的带边权的树。九头龙有\(M\)个头,其中一个是大头,大头要吃恰好\(K\)个节点,其他头吃几个随意。如果一个头吃了一个连通块,那么他们会把树枝也吃下去,获得边权那么多的难受值。先要吃完整棵树,使难受值总和最小
解题思路
首先会发现题目蕴含着一个奇妙的性质。会得到一条边的难受值当且仅当一条边相邻的两个节点是被同一个头吃的,换句话说如果相邻的两个节点是不同的龙吃的那么就不会获得该边的难受值。当我们确定大头吃的\(K\)个点之后,由于剩下的头每个头想吃几个就吃几个,由于给出了一颗树,一定存在一种方案使得任意两个相邻的点是不同的头。事实上,只需要多余的两种头就可以了。换句话说,我们可以把所有多余\(3\)个头的情况看做是\(3\)个头的。
当然需要特殊考虑\(M=2\)的情况,此时剩余的只有一个头了,需要特殊处理
于是,难受值完全取决于大头的那\(K\)个节点如何选择。
考虑树形DP:\(f[u][j][0/1]\)表示子树\(u\)中大头吃\(j\)个的最小难受值之和,其中\(k=0\)表示大头不吃根节点,反之亦然
于是可以发现我们只需要判断\(u,v\)的颜色是否相同即可以转移:当\(M>2\)时,除非\(u,v\)都是\(1\),否则不考虑。当\(M=2\)时,\(0,1\)可以直接表示他们的头了,所以也就是\(u ⊕ v\)
于是我们可以初步得到转移方程:$$f[u][j][1]=Min{f[v][k][0]+g[u][j-k][1],f[v][k][1]+g[u][j-k][1]+cost(u,v)}$$$$f[u][j][0]=Min{f[v][k][0]+g[u][j-k][0]+cost(u,v)*[M=2],f[v][k][1]+g[u][j-k][0]}$$
注意方程中的\(g\)数组,我们好像并没有涉及到它。事实上我们发现,方程的转移时需要枚举\(k\)作为中介的,但是众多儿子,每个儿子的\(k\)如何分配?题目给出了一颗多叉树,使得这一步非常复杂。
联想二叉树的做法,二叉树时当确定一个儿子是\(k\)时,马上就能确定另一个儿子是\(j-k\)。如果也用这种方式来处理多叉树就好了。于是我们在考虑第\(j\)个儿子的时候,可以记录前\(j-1\)个已经做过的儿子的最优值。而上一轮留下的结果正是\(f\)数组!但由于\(f\)数组在不断的更新,肯定不能直接拿过来用,因此需要一个临时数组\(g\)来记录上一轮的结果,其实形象的理解,就是把前面的\(j-1\)个儿子并在了一起
由于每一轮\(f\)数组都要重新更新,因此每一轮都要重新赋值\(+∞\)。另外很容易得到另个初始化条件:\(f[u][0][0]=1, f[u][1][1]=0\)。意义都很显然
Code
/*By DennyQi 2018.8.20*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
const int MAXN = 310;
const int MAXM = 610;
const int INF = 1061109567;
inline int read(){
int x = 0; int w = 1; register int c = getchar();
while(c ^ '-' && (c < '0' || c > '9')) c = getchar();
if(c == '-') w = -1, c = getchar();
while(c >= '0' && c <= '9') x = (x<<3) + (x<<1) + c - '0', c = getchar();return x * w;
}
int N,M,K,x,y,z;
int first[MAXM],nxt[MAXM],to[MAXM],cost[MAXM],cnt;
int f[MAXN][MAXN][2], g[MAXN][2];
inline void add(int u, int v, int w){
to[++cnt]=v, cost[cnt]=w, nxt[cnt]=first[u], first[u]=cnt;
}
void DP(int u, int _f){
int v;
f[u][0][0] = f[u][1][1] = 0;
for(int i = first[u]; i; i = nxt[i]){
if((v = to[i]) == _f) continue;
DP(v, u);
for(int j = 0; j <= K; ++j){
g[j][0] = f[u][j][0];
g[j][1] = f[u][j][1];
f[u][j][0] = INF;
f[u][j][1] = INF;
}
for(int j = 0; j <= K; ++j){
for(int k = 0; k <= j; ++k){
f[u][j][1] = Min(f[u][j][1], f[v][k][0]+g[j-k][1]);
f[u][j][1] = Min(f[u][j][1], f[v][k][1]+g[j-k][1]+cost[i]);
if(M == 2){
f[u][j][0] = Min(f[u][j][0], f[v][k][0]+g[j-k][0]+cost[i]);
}
else{
f[u][j][0] = Min(f[u][j][0], f[v][k][0]+g[j-k][0]);
}
f[u][j][0] = Min(f[u][j][0], f[v][k][1]+g[j-k][0]);
}
}
}
}
int main(){
N = r, M = r, K = r;
if(M-1 + K > N){
printf("-1");
return 0;
}
for(int i = 1; i < N; ++i){
x = r, y = r; z = r;
add(x, y, z);
add(y, x, z);
}
memset(f, 0x3f, sizeof(f));
DP(1, 0);
printf("%d", f[1][K][1]);
return 0;
}
[NOI2002] 贪吃的九头龙的更多相关文章
- [codevs1746][NOI2002]贪吃的九头龙
[codevs1746][NOI2002]贪吃的九头龙 试题描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是说它出生的时候有九个头,而在成长的过程中,它有时 ...
- [NOI2002]贪吃的九头龙(树形dp)
[NOI2002]贪吃的九头龙 题目背景 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是 说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的 ...
- vojis1523 NOI2002 贪吃的九头龙
描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫“九头龙”,但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头因衰老而自己脱落. 有一天, ...
- Vijos1523 NOI2002 贪吃的九头龙 树形dp
思路不算很难,但细节处理很麻烦 前面建图.多叉转二叉,以及确定dp处理序列的过程都是套路,dp的状态转移过程以注释的形式阐述 #include <cstdio> #include < ...
- 洛谷 P4362 [NOI2002]贪吃的九头龙
https://www.luogu.org/problemnew/show/P4362 首先有个很显然的dp:ans[i][j][k]表示i节点用j号头,i节点为根的子树中共有k个点用大头时i节点为根 ...
- Vijos1523贪吃的九头龙【树形DP】
贪吃的九头龙 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头 ...
- 贪吃的九头龙(tyvj P1523)
T2 .tyvj P1523贪吃的九头龙 描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫“九头龙”,但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于 ...
- Vijos 1523 贪吃的九头龙 【树形DP】
贪吃的九头龙 背景 安徽省芜湖市第二十七中学测试题 NOI 2002 贪吃的九头龙(dragon) Description:OfficialData:OfficialProgram:Converted ...
- codevs1746 贪吃的九头龙
[问题描述]传说中的九头龙是一种特别贪吃的动物.虽然名字叫“九头龙”,但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头因衰老而自己脱落.有一 ...
随机推荐
- tensorflow-gpu安装的一些注意
按正确的顺序安装,严格安装特定的版本 1,下载和安装严格版本的cuda和cuDnn,其他版本的不干活.比如要求9.0你就不能装9.1.https://www.tensorflow.org/instal ...
- prometheus排错
1.导入grafana模板后node-export某些图像无法获取到data: 解决:导入grafana 模板是需要看node-export 版本是否与模板要求的一致,不同版本的node-export ...
- 使用C# HttpWebRequest进行多线程网页提交。Async httpclient/HttpWebRequest实现批量任务的发布及异步提交和超时取消
使用线程池并发处理request请求及错误重试,使用委托处理UI界面输出. http://www.cnblogs.com/Charltsing/p/httpwebrequest.html for (i ...
- 【学习总结】 小白CS成长之路
2017-9-3:入坑. 理想:敲着代码唱着歌. 现实:骨感. Step 1: 认识CS: CS大体可以分成以下几个大领域:硬件.系统.软件.网络.计算理论.计算方法. 硬 件 ---- 数字电路.集 ...
- Azure系列2.1.15 —— SharedAccessBlobPolicy
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...
- [转帖]Introduction to text manipulation on UNIX-based systems
Introduction to text manipulation on UNIX-based systems https://www.ibm.com/developerworks/aix/libra ...
- mybatis源码分析(三)------------映射文件的解析
本篇文章主要讲解映射文件的解析过程 Mapper映射文件有哪几种配置方式呢?看下面的代码: <!-- 映射文件 --> <mappers> <!-- 通过resource ...
- (二)Wireshark的实用表格
主要内容: 1.了解端点概念,学习如何在Wireshark中查询端点信息 2.学习利用端点窗口与会话窗口来分析数据包的特点 3.学会Wireshark的协议分层统计窗口的用法 一.端点概念 和数学里的 ...
- python3文字转语音
#安装库(必须先安装pywin32) pip3 install pyttsx3 简单测试 import pyttsx3 engine = pyttsx3.init() text='name' engi ...
- @EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})
@EnableAutoConfiguration 作用:Spring Boot会自动根据你jar包的依赖来自动配置项目. 例如当你项目下面有HSQLDB的依赖时,Spring Boot会创建默认的内存 ...