LeetCode:152_Maximum Product Subarray | 最大乘积连续子数组 | Medium
题目:Maximum Product Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest product. For example, given the array [,,-,],
the contiguous subarray [,] has the largest product = .
这道题属于动态规划的题型,之前常见的是Maximum SubArray,现在是Product Subarray,不过思想是一致的。
当然不用动态规划,常规方法也是可以做的,但是时间复杂度过高(TimeOut),像下面这种形式:
// 思路:用两个指针来指向字数组的头尾
int maxProduct(int A[], int n)
{
assert(n > );
int subArrayProduct = -; for (int i = ; i != n; ++ i) {
int nTempProduct = ;
for (int j = i; j != n; ++ j) {
if (j == i)
nTempProduct = A[i];
else
nTempProduct *= A[j];
if (nTempProduct >= subArrayProduct)
subArrayProduct = nTempProduct;
}
}
return subArrayProduct;
}
用动态规划的方法,就是要找到其转移方程式,也叫动态规划的递推式,动态规划的解法无非是维护两个变量,局部最优和全局最优,我们先来看Maximum SubArray的情况,如果遇到负数,相加之后的值肯定比原值小,但可能比当前值大,也可能小,所以,对于相加的情况,只要能够处理局部最大和全局最大之间的关系即可,对此,写出转移方程式如下:
local[i + 1] = Max(local[i] + A[i], A[i]);
global[i + 1] = Max(local[i + 1], global[i]);
对应代码如下:
int maxSubArray(int A[], int n)
{
assert(n > );
if (n <= )
return ;
int global = A[];
int local = A[]; for(int i = ; i != n; ++ i) {
local = MAX(A[i], local + A[i]);
global = MAX(local, global);
}
return global;
}
而对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的转移方程式:
max_copy[i] = max_local[i]
max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]), min_local * A[i])
min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]), min_local * A[i])
对应代码如下:
#define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)<(y)?(x):(y)) int maxProduct1(int A[], int n)
{
assert(n > );
if (n <= )
return ; if (n == )
return A[];
int max_local = A[];
int min_local = A[]; int global = A[];
for (int i = ; i != n; ++ i) {
int max_copy = max_local;
max_local = MAX(MAX(A[i] * max_local, A[i]), A[i] * min_local);
min_local = MIN(MIN(A[i] * max_copy, A[i]), A[i] * min_local);
global = MAX(global, max_local);
}
return global;
}
总结:动态规划题最核心的步骤就是要写出其状态转移方程,但是如何写出正确的方程式,需要我们不断的实践并总结才能达到。
LeetCode:152_Maximum Product Subarray | 最大乘积连续子数组 | Medium的更多相关文章
- 【LeetCode】Maximum Product Subarray 求连续子数组使其乘积最大
Add Date 2014-09-23 Maximum Product Subarray Find the contiguous subarray within an array (containin ...
- LeetCode Maximum Product Subarray(枚举)
LeetCode Maximum Product Subarray Description Given a sequence of integers S = {S1, S2, . . . , Sn}, ...
- [LeetCode] Subarray Sum Equals K 子数组和为K
Given an array of integers and an integer k, you need to find the total number of continuous subarra ...
- [LeetCode] 560. Subarray Sum Equals K 子数组和为K
Given an array of integers and an integer k, you need to find the total number of continuous subarra ...
- LeetCode Maximum Product Subarray 解题报告
LeetCode 新题又更新了.求:最大子数组乘积. https://oj.leetcode.com/problems/maximum-product-subarray/ 题目分析:求一个数组,连续子 ...
- 连续子数组的最大乘积及连续子数组的最大和(Java)
1. 子数组的最大和 输入一个整形数组,数组里有正数也有负数.数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和.求所有子数组的和的最大值.例如数组:arr[]={1, 2, 3, -2, ...
- lintcode :continuous subarray sum 连续子数组之和
题目 连续子数组求和 给定一个整数数组,请找出一个连续子数组,使得该子数组的和最大.输出答案时,请分别返回第一个数字和最后一个数字的值.(如果两个相同的答案,请返回其中任意一个) 样例 给定 [-3, ...
- Maximum Subarray 连续子数组最大和
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- leetcode面试题42. 连续子数组的最大和
总结一道leetcode上的高频题,反反复复遇到了好多次,特别适合作为一道动态规划入门题,本文将详细的从读题开始,介绍解题思路. 题目描述示例动态规划分析代码结果 题目 面试题42. 连续子数 ...
随机推荐
- ASP.Net Core2.1中的HttpClientFactory系列二:集成Polly处理瞬态故障
前言:最近,同事在工作中遇到了使用HttpClient,有些请求超时的问题,辅导员让我下去调研一下,HttpClinet的使用方式已经改成了之前博客中提到的方式,问题的原因我已经找到了,就是因为使用了 ...
- 通过 Systemd Journal 收集日志
随着 systemd 成了主流的 init 系统,systemd 的功能也在不断的增加,比如对系统日志的管理.Systemd 设计的日志系统好处多多,这里笔者就不再赘述了,本文笔者主要介绍 syste ...
- java----牛客练习
1. 形式参数就是函数定义时设定的参数.例如函数头 int min(int x,int y,int z) 中 x,y,z 就是形参.实际参数是调用函数时所使用的实际的参数. 真正被传递的是实参 ...
- pycharm 报错:pycharm please specify a different SDK name
我在给项目配虚拟环境里的解释器的时候有没有遇到过这个问题的啊,就是一个正常的项目,解释器忽然丢了,解释器是配在虚拟环境里面的,再去选择解释器就一直报这个错,给现有项目添加虚拟环境的时候也是报这个错—— ...
- python中map()函数用法
map函数的原型是map(function, iterable, …),它的返回结果是一个列表. 参数function传的是一个函数名,可以是python内置的,也可以是自定义的. 参数iterabl ...
- openstack-云计算概述
一.云计算 1.云计算解决的问题 备机准备(低配) 故障恢复 安装系统 硬件资源浪费 电力资源浪费 2.云计算概念 (1)维基百科 云计算是一种通过因特网以服务的方式提供动态可伸缩的虚拟化的资源的计算 ...
- Django之事务
Django之事务 事务就是将一组操作捆绑在一起,只有当这一组操作全部都成功以后这个事务才算成功;当这组操作中有任何一个没有操作成功,则这个操作就会回滚,回到操作之前的状态. 其中牵扯到向数据库中写数 ...
- 软件工程(FZU2015) 赛季得分榜,第三回合
SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分=团队得分+个人贡献分 个人贡献分: 个人 ...
- 优化MySQL性能的几种方法-总结
原文:http://bbs.landingbj.com/t-0-245601-1.html 1.要选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越 小,在它上 ...
- 虚拟机安装CentOS7之后没有ip的问题
CentOS 7 默认是不启动网卡的(ONBOOT=no),主要是修改一下网上配置,然后重起便可,看这篇博客操作: https://blog.csdn.net/dancheren/article/de ...