题目描述

在一场战争中,战场由\(n\)岛屿和\(n-1\)个桥梁组成,保证每两个岛屿间有且仅有一条路径可达。现在,我军已经侦查到敌军的总部在编号为\(1\)的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望。已知在其他\(k\)个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿。由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小。

侦查部门还发现,敌军有一台神秘机器。即使我军切断所有能源之后,他们也可以用那台机器。机器产生的效果不仅仅会修复所有我军炸毁的桥梁,而且会重新随机资源分布(但可以保证的是,资源不会分布到\(1\)号岛屿上)。不过侦查部门还发现了这台机器只能够使用\(m\)次,所以我们只需要把每次任务完成即可。

输入格式:

第一行一个整数\(n\),代表岛屿数量。

接下来\(n-1\)行,每行三个整数\(u\),\(v\),\(w\),代表\(u\)号岛屿和\(v\)号岛屿由一条代价为\(c\)的桥梁直接相连,保证\(1<=u,v<=n\)且\(1<=c<=100000\)。

第\(n+1\)行,一个整数\(m\),代表敌方机器能使用的次数。

接下来\(m\)行,每行一个整数\(ki\),代表第\(i\)次后,有\(ki\)个岛屿资源丰富,接下来\(k\)个整数\(h1,h2,…hk\),表示资源丰富岛屿的编号。

输出格式:

输出有\(m\)行,分别代表每次任务的最小代价。

【数据规模和约定】

对于\(10\%\)的数据,\(2<=n<=10,1<=m<=5,1<=ki<=n-1\)

对于\(20\%\)的数据,\(2<=n<=100,1<=m<=100,1<=ki<=min(10,n-1)\)

对于\(40\%\)的数据,\(2<=n<=1000,m>=1,sigma(ki)<=500000,1<=ki<=min(15,n-1)\)

对于\(100\%\)的数据,\(2<=n<=250000,m>=1,sigma(ki)<=500000,1<=ki<=n-1\)


题目中\(k\)的总数有\(500000\),显然虚树优化树形\(DP\).因为是第一次写虚树所以出了不少\(bug\),这里来总结一下怎么写虚树.

首先,你要能建立出树形\(DP\)的朴素模型

在此基础上,由于询问点数和有限,所以我们并不需要对每次询问都\(O(N)\)\(DP\)回答.这里我们进行一次\(DFS\)的预处理,只抽出有效信息的一颗浓缩的树.那么关键就在怎么把它抽出来了.

对这个题,我们可以记录一个根节点到每个节点的最窄部分.然后对询问点按照\(dfs\)序排序.排序过后,对每两个\(dfs\)序相邻节点求\(lca\)扔进要用的点里.(可以口胡得到:这样一定涵盖所有必要的\(LCA\))再按\(dfs\)序排一次序,然后就可以愉快地建树\(DP\)啦.

Code:

#include <bits/stdc++.h>
#define int long long
#define N 250010
using namespace std; int n, m, k, u, v, w, cnt, val[N], head[N]; int ss[N << 1], sta[N << 1], deep[N], ff[N][22], done[N]; struct edge {
int nxt, to, w;
}e[N << 1]; void add_edge (int from, int to, int val) {
e[++cnt].nxt = head[from];
e[cnt].to = to;
e[cnt].w = val;
head[from] = cnt;
} int dfn[N], low[N], _dfn = 0; void pre (int u, int fa) {
dfn[u] = ++_dfn;
deep[u] = deep[fa] + 1;
ff[u][0] = fa;
for (int i = 1; (1 << i) <= deep[u]; ++i) {
ff[u][i] = ff[ff[u][i - 1]][i - 1];
}
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
val[v] = min (val[u], e[i].w);
pre (v, u);
// printf ("val[%lld] = min (%lld, %lld)\n", v, val[u], e[i].w);
}
}
low[u] = _dfn;
} bool cmp (const int &lhs, const int &rhs) {
return dfn[lhs] < dfn[rhs];
} int lca (int u, int v) {
// printf ("lca (%lld, %lld) = ", u, v);
if (deep[u] < deep[v]) swap (u, v);
for (int i = 20; i >= 0; --i) {
if (deep[ff[u][i]] >= deep[v]) {
u = ff[u][i];
}
}
if (u == v) return u;
for (int i = 20; i >= 0; --i) {
if (ff[u][i] != ff[v][i]) {
u = ff[u][i];
v = ff[v][i];
}
}
//printf ("%lld\n", ff[u][0]);
return ff[u][0];
} int get_ans (int u, int fa) {
if (done [u]) return val[u];
int res = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
res += get_ans (v, u);
}
}
return min (res, val[u]);
} signed main () {
//freopen ("2495.in", "r", stdin);
scanf ("%lld", &n);
for (int i = 1; i < n; ++i) {
scanf ("%lld %lld %lld", &u, &v, &w);
add_edge (u, v, w);
add_edge (v, u, w);
}
memset (val, 0x3f, sizeof (val));
pre (1, 0);
/*
for (int i = 1; i <= n; ++i) {
printf ("node = %lld, val = %lld, low = %lld, dfn = %lld\n", i, val[i], low[i], dfn[i]);
} */
memset (head, 0, sizeof (head));
scanf ("%lld", &m);
for (int i = 1; i <= m; ++i) {
// printf ("ask = %lld\n", i);
scanf ("%lld", &k);
for (int j = 1; j <= k; ++j) {
scanf ("%lld", &ss[j]);
done[ss[j]] = true;
}
sort (ss + 1, ss + 1 + k, cmp);
for (int j = k; j > 1; --j) {
ss[++k] = lca (ss[j], ss[j - 1]);
}
ss[++k] = 1;
sort (ss + 1, ss + 1 + k, cmp);
k = unique (ss + 1, ss + 1 + k) - ss - 1;
int top = 0; cnt = 0;
for (int j = 1; j <= k; ++j) {
while (top && low[sta[top]] < dfn[ss[j]]) --top;
add_edge (sta[top], ss[j], val[j]);
add_edge (ss[j], sta[top], val[j]);
sta[++top] = ss[j];
}
get_ans (1, 0);
//print_tree (1, 0);
printf ("%lld\n", get_ans (1, 0)); for (int j = 1; j <= k; ++j) {
//printf ("dp[%lld] = %lld\n", ss[j], dp[ss[j]]);
done[ss[j]] = false, head[ss[j]] = 0;
} }
}

Luogu2495[SDOI2011]消耗战的更多相关文章

  1. Luogu-2495 [SDOI2011]消耗战

    虚树第一题 对于每次询问的点建立一棵虚树,然后在树上DP,一个点的答案就是这个点的父边切断的代价与所有儿子切断的代价去最小值,当然如果这个节点是资源点则必须切父边 注意在虚树上一条边的代价应该是中间所 ...

  2. BZOJ2286/Luogu2495 [Sdoi2011]消耗战 (虚树)

    // never forget open "Head.cpp", boy, never ! #include <iostream> #include <cstdi ...

  3. BZOJ 2286: [Sdoi2011]消耗战

    2286: [Sdoi2011消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2082  Solved: 736[Submit][Status] ...

  4. bzoj 2286: [Sdoi2011]消耗战 虚树+树dp

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 在一 ...

  5. bzoj千题计划254:bzoj2286: [Sdoi2011]消耗战

    http://www.lydsy.com/JudgeOnline/problem.php?id=2286 虚树上树形DP #include<cmath> #include<cstdi ...

  6. 【LG2495】[SDOI2011]消耗战

    [LG2495][SDOI2011]消耗战 题面 洛谷 题解 参考博客 题意 给你\(n\)个点的一棵树 \(m\)个询问,每个询问给出\(k\)个点 求将这\(k\)个点与\(1\)号点断掉的最小代 ...

  7. AC日记——[SDOI2011]消耗战 洛谷 P2495

    [SDOI2011]消耗战 思路: 建虚树走树形dp: 代码: #include <bits/stdc++.h> using namespace std; #define INF 1e17 ...

  8. [BZOJ2286][SDOI2011]消耗战(虚树DP)

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4998  Solved: 1867[Submit][Statu ...

  9. BZOJ2286 [Sdoi2011]消耗战 【虚树 + 树形Dp】

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 4261  Solved: 1552 [Submit][Sta ...

随机推荐

  1. Attention Model

    参考1: https://blog.csdn.net/malefactor/article/details/50550211 attention部分实现:  https://blog.csdn.net ...

  2. LODOP打印安装到win的特殊字体

    LODOP能够打印的字体,来源于安装到本机windows里字体库的字体,如果需要打印特别的字体,需要在该操作系统安装.由于web网站的用户千差万别,字体库也有不同,但是一般常见的字体都是有的,因此做模 ...

  3. 如何消除原生Android网络状态上的惊叹号

    喜欢使用原生Android系统的朋友可能会发现自己的状态栏信号图标上经常有一个惊叹号标志. 这是怎么回事呢?原因是Android为了对网络状态进行检测,采用了一种叫做captive detection ...

  4. 【数模】day06-数理统计I

    数理统计. 以样本推断总体,进而用总体研究问题. 分两部分学习,第一部分是基础统计.参数估计.假设检验以及bootstrap方法. 1. 基础统计 假设有如下数据: 要做频数表.直方图.折线图.饼状图 ...

  5. HTTP协议那些事儿(Web开发补充知识点)

    HTTP协议 超文本传输协议(英文:HyperText Transfer Protocol,缩写:HTTP)是一种用于分布式.协作式和超媒体信息系统的应用层协议.HTTP是万维网的数据通信的基础. H ...

  6. 前端部分-CSS基础介绍

    CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素.也就是定义相应的标签语言来定制显示样式达到一定的显示效果. 每个CSS样式由两个组成部分:选择器和 ...

  7. .net core 2.0 Autofac

    参考自 https://github.com/VictorTzeng/Zxw.Framework.NetCore 安装Autofac,在`project.csproj`加入 <PackageRe ...

  8. Codeforces Round #505 Div. 1 + Div. 2

    传送门:>Here< 从来没打过\(CF\)(由于太晚了)-- 不知道开学了以后有没有机会能够熬夜打几场,毕竟到现在为止都是\(unrated\)好尴尬啊~ 今天早上打了几题前几天的比赛题 ...

  9. Codeforces300 F. A Heap of Heaps

    Codeforces题号:#300F 出处: Codeforces 主要算法:树状数组/线段树 难度:4.6 思路分析: 在没看到数据范围之前真是喜出望外,直到发现O(n^2)会被卡…… 其实也不是特 ...

  10. Mysql 函数大全- 5.6 中文解释函数参考

    mysql 函数大全 5.6 函数参考 5.6函数参考    (只翻译部分,细节查看相关英文版) 12.1功能和操作员参考 12.2表达式评估中的类型转换 12.3运营商 12.4控制流功能 12.5 ...