Sum It Up

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5820   Accepted: 2970

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that
equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the
input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear
in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order.
A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums
with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

Source



思路:因为数量少。能够暴力搜索解决。

DFS。值得注意的地方是去重,我用的是和上一递归pre比較。假设同样则减枝。



#include<iostream>
#include<cstdio> using namespace std; int num[15],ans[15];
int flag,t,n; void dfs(int now,int sum,int cur)
{
if(sum==0)
{
flag=1;
printf("%d",ans[0]);
for(int i=1;i<cur;i++)
{
printf("+%d",ans[i]);
}
printf("\n");
return;
}
else
{
int pre=-1;
for(int i=now;i<n;i++)
{
if(sum>=num[i]&&num[i]!=pre)
{
pre=num[i]; //此处与上一次递归的num[i],即pre,作比較。
ans[cur]=num[i];
dfs(i+1,sum-num[i],cur+1);
}
}
}
} int main()
{
while(scanf("%d%d",&t,&n),n&&t)
{
flag=0;
printf("Sums of %d:\n",t);
for(int i=0;i<n;i++)
scanf("%d",num+i);
dfs(0,t,0); if(!flag)
printf("NONE\n");
} return 0; }

       
不知道。我理解得,对不正确。每条递归路线互不影响。

即一个数组ans[15],并没有什么值得覆盖问题。

POJ 1564 Sum It Up (DFS+剪枝)的更多相关文章

  1. poj 1564 Sum It Up(dfs)

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7191   Accepted: 3745 Descrip ...

  2. poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)

    Sum It Up Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  3. poj 1564 Sum It Up (DFS+ 去重+排序)

    http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...

  4. poj 1564 Sum It Up

    题目连接 http://poj.org/problem?id=1564 Sum It Up Description Given a specified total t and a list of n ...

  5. POJ 1564 Sum It Up(DFS)

    Sum It Up Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. poj 1564 Sum It Up【dfs+去重】

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Accepted: 3475 Descrip ...

  7. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  8. 【POJ - 1190】生日蛋糕 (dfs+剪枝)

    Descriptions: 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为 ...

  9. POJ 1564 经典dfs

    1.POJ 1564 Sum It Up 2.总结: 题意:在n个数里输出所有相加为t的情况. #include<iostream> #include<cstring> #in ...

随机推荐

  1. 1020 Tree Traversals (25)(25 point(s))

    problem Suppose that all the keys in a binary tree are distinct positive integers. Given the postord ...

  2. 利用Pastezort渗透win7

    下载Pastezort git clone https://github.com/ZettaHack/PasteZort.git 给Pastezort文件夹提升权限 /root/PasteZort/ ...

  3. Educational Codeforces Round 13 C. Joty and Chocolate 水题

    C. Joty and Chocolate 题目连接: http://www.codeforces.com/contest/678/problem/C Description Little Joty ...

  4. 证明 O(n/1+n/2+…+n/n)=O(nlogn)

    前言 在算法中,经常需要用到一种与调和级数有关的方法求解,在分析该方法的复杂度时,我们会经常得到\(O(\frac{n}{1}+\frac{n}{2}+\ldots+\frac{n}{n})\)的复杂 ...

  5. ROS知识(9)----安装Turtlebot2和远程控制Turtlebot2

    安装turtlebot2,场景为:turtlebot2上搭载着一台电脑主机A,该电脑作为主机Master,有自带的电源和3D传感器,roscore在该台机器上启动.pc电脑远程连接A,和A通讯,pc不 ...

  6. AbstractAction

    package cn.tz.action.abs; import java.io.File; import java.io.IOException; import java.text.SimpleDa ...

  7. 使用postMessage进行react和iframe的数据通信.md

    将react的数据传递给iframe 1.首先在父组件(react文件)内引入iframe <iframe style={{border:0,width:"100%",hei ...

  8. 【Go入门教程9】并发(goroutine,channels,Buffered Channels,Range和Close,Select,超时,runtime goroutine)

    有人把Go比作21世纪的C语言,第一是因为Go语言设计简单,第二,21世纪最重要的就是并行程序设计,而Go从语言层面就支持了并行. goroutine goroutine是Go并行设计的核心.goro ...

  9. CentOS7LINUX 内核调试符号安装

    yum install -y kernel-devel # debuginfo,在CentOS7中需要这样装 sudo vim /etc/yum.repos.d/CentOS-Debuginfo.re ...

  10. 使用Bootstrap 3开发响应式网站实践05,使用Tab、Modal、Form展示内容,使用Popover、Tooltip展示提示信息

    本篇体验用Tab插件显示内容.Html部分为: <div class="row" id="moreInfo"> <div class=&quo ...