Sum It Up

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5820   Accepted: 2970

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that
equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the
input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear
in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order.
A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums
with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

Source



思路:因为数量少。能够暴力搜索解决。

DFS。值得注意的地方是去重,我用的是和上一递归pre比較。假设同样则减枝。



#include<iostream>
#include<cstdio> using namespace std; int num[15],ans[15];
int flag,t,n; void dfs(int now,int sum,int cur)
{
if(sum==0)
{
flag=1;
printf("%d",ans[0]);
for(int i=1;i<cur;i++)
{
printf("+%d",ans[i]);
}
printf("\n");
return;
}
else
{
int pre=-1;
for(int i=now;i<n;i++)
{
if(sum>=num[i]&&num[i]!=pre)
{
pre=num[i]; //此处与上一次递归的num[i],即pre,作比較。
ans[cur]=num[i];
dfs(i+1,sum-num[i],cur+1);
}
}
}
} int main()
{
while(scanf("%d%d",&t,&n),n&&t)
{
flag=0;
printf("Sums of %d:\n",t);
for(int i=0;i<n;i++)
scanf("%d",num+i);
dfs(0,t,0); if(!flag)
printf("NONE\n");
} return 0; }

       
不知道。我理解得,对不正确。每条递归路线互不影响。

即一个数组ans[15],并没有什么值得覆盖问题。

POJ 1564 Sum It Up (DFS+剪枝)的更多相关文章

  1. poj 1564 Sum It Up(dfs)

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7191   Accepted: 3745 Descrip ...

  2. poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)

    Sum It Up Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Sub ...

  3. poj 1564 Sum It Up (DFS+ 去重+排序)

    http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...

  4. poj 1564 Sum It Up

    题目连接 http://poj.org/problem?id=1564 Sum It Up Description Given a specified total t and a list of n ...

  5. POJ 1564 Sum It Up(DFS)

    Sum It Up Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  6. poj 1564 Sum It Up【dfs+去重】

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Accepted: 3475 Descrip ...

  7. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  8. 【POJ - 1190】生日蛋糕 (dfs+剪枝)

    Descriptions: 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为 ...

  9. POJ 1564 经典dfs

    1.POJ 1564 Sum It Up 2.总结: 题意:在n个数里输出所有相加为t的情况. #include<iostream> #include<cstring> #in ...

随机推荐

  1. linux驱动之一语点破天机

    <const 关键字> 在嵌入式系开发中,const关键字就是“只读”的意思   <为什么要ARM需要进行C语言环境的初始化> 在汇编情况下,指令的跳转,保护现场需要保存的数据 ...

  2. 递归与分治策略之棋盘覆盖Java实现

    递归与分治策略之棋盘覆盖 一.问题描述 二.过程详解 1.棋盘如下图,其中有一特殊方格:16*16 . 2.第一个分割结果:8*8 3.第二次分割结果:4*4 4.第三次分割结果:2*2 5.第四次分 ...

  3. DP Training(Updating)

    感觉前面做了那么多$dp$全是自己想的还是太少啊…… 好像在LZT的博客上看到了不错的资源?赶紧开坑,以一句话题解为主 Codeforces 419B 第一题就开始盗图 由于只有一个交点,手玩一下发现 ...

  4. UOJ.87.mx的仙人掌(圆方树 虚树)(未AC)

    题目链接 本代码10分(感觉速度还行..). 建圆方树,预处理一些东西.对询问建虚树. 对于虚树上的圆点直接做:对于方点特判,枚举其所有儿子,如果子节点不在该方点代表的环中,跳到那个点并更新其val, ...

  5. redis 多实例 连接 加密码

    =启动多个redis实例= #redis-server/usr/local/redis/redis6370.conf #redis-server/usr/local/redis/redis6371.c ...

  6. 20162327WJH实验四——图的实现与应用

    20162327WJH实验四--图的实现与应用 实 验 报 告 课程:程序设计与数据结构 班级: 1623 姓名: 王旌含 学号:20162327 成绩: 指导教师:娄嘉鹏 王志强 实验日期:11月2 ...

  7. 2018-2019-2 20162318《网络对抗技术》Exp3 免杀原理与实践

    一.实验内容 1.正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion),加壳工具),使用shellcode编程 2.通过组合应用各种技术实现恶意代码免杀(如果成 ...

  8. python循环与判断

    学习一门新的语言最重要的就是练习. 一.脚本需求: 编写登陆接口 输入用户名密码 认证成功后显示欢迎信息 输错三次后锁定 二.脚本流程图: 写代码之前画个流程图总是好的,可以让你理清思路,避免写着写着 ...

  9. CentOS的update-grub2命令

    这个和Ubuntu还是有些区别,在CentOS修改成如下: grub2-mkconfig -o /boot/grub2/grub.cfg

  10. Windows Server 2016 Essentials试用

    下载地址: Windows Server 2016 Essentials (x64) SHA-1:        6E1D1880873157ADCEF3D74363308A95DC89103D ed ...